The problems of admissible finite-time stability (AFTS) and admissible finite-time stabilization for a class of uncertain discrete singular systems are addressed in this study. The definition of AFTS is first given. Second, a sufficient condition for the AFTS of the nominal unforced system is established, which is further extended to the uncertain case. Then, a sufficient condition is proposed for the design of a state feedback controller such that the closed-loop system is admissibly finite-time stable for all admissible uncertainties. Both the AFTS and the controller design conditions are presented in terms of linear matrix inequalities (LMIs) with a fixed parameter. Finally, two numerical examples are provided to illustrate the effectiveness of the developed theory.

References

References
1.
Dorato
,
P.
,
1961
, “
Short Time Stability in Linear Time-Varying Systems
,”
Proceedings of the IRE International Convention Record, Part 4
,
New York
, pp.
83
87
.
2.
Weiss
,
L.
, and
Infante
,
E.
,
1967
, “
Finite Time Stability Under Perturbing Forces and on Product Spaces
,”
IEEE Trans. Autom. Control
,
12
(
1
), pp.
54
59
.10.1109/TAC.1967.1098483
3.
Amato
,
F.
,
Ariola
,
M.
, and
Dorato
,
P.
,
2001
, “
Finite-Time Control of Linear Systems Subject to Parametric Uncertainties and Disturbances
,”
Automatica
,
37
(
9
), pp.
1459
1463
.10.1016/S0005-1098(01)00087-5
4.
Amato
,
F.
, and
Ariola
,
M.
,
2005
, “
Finite-Time Control of Discrete-Time Linear Systems
,”
IEEE Trans. Autom. Control
,
50
(
5
), pp.
724
729
.10.1109/TAC.2005.847042
5.
Amato
,
F.
,
Ariola
,
M.
, and
Cosentino
,
C.
,
2006
, “
Finite-Time Stabilization via Dynamic Output Feedback
,”
Automatica
,
42
(
2
), pp.
337
342
.10.1016/j.automatica.2005.09.007
6.
Garcia
,
G.
,
Tarbouriech
,
S.
, and
Bernussou
,
J.
,
2009
, “
Finite-Time Stabilization of Linear Time-Varying Continuous Systems
,”
IEEE Trans. Autom. Control
,
54
(
2
), pp.
364
369
.10.1109/TAC.2008.2008325
7.
Amato
,
F.
,
Ariola
,
M.
, and
Cosentino
,
C.
,
2010
, “
Finite-Time Control of Discrete-Time Linear Systems: Analysis and Design Conditions
,”
Automatica
,
46
(
5
), pp.
919
924
.10.1016/j.automatica.2010.02.008
8.
Lazarević
,
M. P.
, and
Debeljković
,
D. L.
,
2005
, “
Finite Time Stability Analysis of Linear Autonomous Fractional Order Systems With Delayed State
,”
Asian J. Control
,
7
(
4
), pp.
440
447
.10.1111/j.1934-6093.2005.tb00407.x
9.
Mastellone
,
S.
,
Abdallah
,
C. T.
, and
Dorato
,
P.
,
2005
, “
Stability and Finite-Time Stability Analysis of Discrete-Time Nonlinear Networked Control Systems
,”
Proceedings of the American Control Conference
(
ACC
),
Portland
, OR, pp.
1239
1244
.10.1109/ACC.2005.1470134
10.
He
,
S.
, and
Liu
,
F.
,
2010
, “
Stochastic Finite-Time Stabilization for Uncertain Jump Systems via State Feedback
,”
ASME J. Dyn. Sys., Meas., Control
,
132
(
3
), p.
034504
.10.1115/1.4001278
11.
Amato
,
F.
,
Cosentino
,
C.
, and
Merola
,
A.
,
2010
, “
Sufficient Conditions for Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems
,”
IEEE Trans. Autom. Control
,
55
(
2
), pp.
430
434
.10.1109/TAC.2009.2036312
12.
Amato
,
F.
,
Ambrosino
,
R.
,
Ariola
,
M.
, and
De Tommasi
,
G.
,
2011
, “
Robust Finite-Time Stability of Impulsive Dynamical Linear Systems Subject to Norm-Bounded Uncertainties
,”
Int. J. Robust Nonlinear Control
,
21
(
10
), pp.
1080
1092
.10.1002/rnc.1620
13.
Lewis
,
F. L.
,
1986
, “
A Survey of Linear Singular Systems
,”
Circuits Syst. Signal Process.
,
5
(
1
), pp.
3
36
.10.1007/BF01600184
14.
Dai
,
L.
,
1989
,
Singular Control Systems
,
Springer
,
Berlin
.
15.
Xu
,
S.
, and
Lam
,
J.
,
2006
,
Robust Control and Filtering of Singular Systems
,
Springer
,
Berlin
.
16.
Xu
,
S.
, and
Lam
,
J.
,
2004
, “
Robust Stability and Stabilization of Discrete Singular Systems: An Equivalent Characterization
,”
IEEE Trans. Autom. Control
,
49
(
4
), pp.
568
574
.10.1109/TAC.2003.822854
17.
Ma
,
S.
,
Cheng
,
Z.
, and
Zhang
,
C.
,
2007
, “
Delay-Dependent Robust Stability and Stabilisation for Uncertain Discrete Singular Systems With Time-Varying Delays
,”
IET Control Theory Appl.
,
1
(
4
), pp.
1086
1095
.10.1049/iet-cta:20060131
18.
Wu
,
Z.
,
Su
,
H.
, and
Chu
,
J.
,
2008
, “
Robust Stabilization for Uncertain Discrete Singular Systems With State Delay
,”
Int. J. Robust Nonlinear Control
,
18
(
16
), pp.
1532
1550
.10.1002/rnc.1302
19.
Xia
,
Y.
,
Boukas
,
E.
,
Shi
,
P.
, and
Zhang
,
J.
,
2009
, “
Stability and Stabilization of Continuous-Time Singular Hybrid Systems
,”
Automatica
,
45
(
6
), pp.
1504
1509
.10.1016/j.automatica.2009.02.008
20.
Xu
,
S.
, and
Yang
,
C.
,
2000
, “
H∞ State Feedback Control for Discrete Singular Systems
,”
IEEE Trans. Autom. Control
,
45
(
7
), pp.
1405
1409
.10.1109/9.880625
21.
Ji
,
X.
,
Su
,
H.
, and
Chu
,
J.
,
2007
, “
Robust State Feedback H∞ Control for Uncertain Linear Discrete Singular Systems
,”
IET Control Theory Appl.
,
1
(
1
), pp.
195
200
.10.1049/iet-cta:20050482
22.
Ma
,
S.
, and
Zhang
,
C.
,
2012
, “
H∞ Control for Discrete-Time Singular Markov Jump Systems Subject to Actuator Saturation
,”
J. Franklin Inst.
,
349
(
3
), pp.
1011
1029
.10.1016/j.jfranklin.2011.12.004
23.
Xu
,
S.
,
Lam
,
J.
, and
Zhang
,
L.
,
2002
, “
Robust D-Stability Analysis for Uncertain Discrete Singular Systems With State Delay
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
,
49
(
4
), pp.
551
555
.10.1109/81.995677
24.
Mao
,
W.
,
2011
, “
An LMI Approach to D-Stability and D-Stabilization of Linear Discrete Singular Systems With State Delay
,”
Appl. Math. Comput.
,
218
(
5
), pp.
1694
1704
.10.1016/j.amc.2011.06.048
25.
Zhao
,
S.
,
Sun
,
J.
, and
Liu
,
L.
,
2008
, “
Finite-Time Stability of Linear Time-Varying Singular Systems With Impulsive Effects
,”
Int. J. Control
,
81
(
11
), pp.
1824
1829
.10.1080/00207170801898893
26.
Xu
,
J.
, and
Sun
,
J.
,
2010
, “
Finite-Time Stability of Linear Time-Varying Singular Impulsive Systems
,”
IET Control Theory Appl.
,
4
(
10
), pp.
2239
2244
.10.1049/iet-cta.2010.0242
27.
Feng
,
J.
,
Wu
,
Z.
, and
Sun
,
J.
,
2005
, “
Finite-Time Control of Linear Singular Systems With Parametric Uncertainties and Disturbances
,”
Acta Automatica Sin.
,
31
(
4
), pp.
634
637
. Available at http://www.aas.net.cn/qikan/epaper/zhaiyao.asp?bsid=7906
28.
Zhang
,
Y.
,
Liu
,
C.
, and
Mu
,
X.
,
2012
, “
Robust Finite-Time H Control of Singular Stochastic Systems via Static Output Feedback
,”
Appl. Math. Comput.
,
218
(
9
), pp.
5629
5640
.10.1016/j.amc.2011.11.057
29.
Petersen
,
I. R.
,
1987
, “
A Stabilization Algorithm for a Class of Uncertain Linear Systems
,”
Syst. Control Lett.
,
8
(
4
), pp.
351
357
.10.1016/0167-6911(87)90102-2
30.
Toker
,
O.
, and
Ozbay
,
H.
,
1995
, “
On the NP-Hardness of Solving Bilinear Matrix Inequalities and Simultaneous Stabilization With Static Output Feedback
,”
Proceedings of the American Control Conference
(
ACC
),
Seattle
,
WA
, pp.
2525
2526
. 10.1109/ACC.1995.532300
31.
Fukuda
,
M.
, and
Kojima
,
M.
,
2001
, “
Branch-and-Cut Algorithms for the Bilinear Matrix Inequality Eigenvalue Problem
,”
Comput. Optim. Appl.
,
19
(
1
), pp.
79
105
.10.1023/A:1011224403708
32.
Fridman
,
E.
, and
Shaked
,
U.
,
2002
, “
A Descriptor System Approach to H Control of Linear Time-Delay Systems
,”
IEEE Trans. Autom. Control
,
47
(
2
), pp.
253
270
.10.1109/9.983353
33.
Boyd
,
S.
,
Ghaoui
,
L. E.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia, PA
.
You do not currently have access to this content.