In this work, the existence of maximal contractive sets for unstable multi input linear systems is discussed. It is shown that, under suitable algebraic conditions, linear feedback laws can be designed such that the set of values satisfying the saturation constraints is an invariant set for the closed-loop system, which is asymptotically stable.

References

References
1.
Blanchini
,
F.
,
1999
, “
Set Invariance in Control
,”
Automatica
,
35
, pp.
1747
1767
.10.1016/S0005-1098(99)00113-2
2.
Castelan
,
E. B.
, and
Hennet
,
J. C.
,
1993
, “
On Invariant Polyhedra of Continuous-Time Linear Systems
,”
IEEE Trans. Autom. Control
,
38
, pp.
1680
1685
.10.1109/9.262058
3.
Dorea
,
C.
,
2009
, “
Output-Feedback Controlled-Invariant Polyhedra for Constrained Linear Systems
,” Proceedings
IEEE
Conference on Decision and Control 2009
,
Shanghai, China
, pp.
5317
5322
.10.1109/CDC.2009.5399594
4.
Dorea
,
C.
, and
Hennet
,
J. C.
,
1999
, “
(A, B)-Invariant Polyhedral Sets of Linear Discrete Time Systems
,”
J. Optim. Theory Appl.
,
103
, pp.
521
542
.10.1023/A:1021727806358
5.
Hu
,
T.
, and
Lin
,
Z.
,
2001
, “
Exact Characterization of Invariant Ellipsoids for Linear Systems With Saturating Actuators
,” Proceedings
IEEE
Conference on Decision and Control 2001
,
Orlando, FL
, pp.
4669
4674
.10.1109/.2001.980943
6.
O'Dell
,
B. D.
, and
Misawa
,
E. A.
,
2000
, “
Semi-Ellipsoidal Controlled Invariant Sets for Constrained Linear Systems
,”
Proceedings of the American Control Conference 2000
,
Chigago, IL
,
ACC
, pp.
1779
1783
.10.1109/ACC.2000.879507
7.
Zhou
,
B.
, and
Duan
,
G.
,
2009
, “
On Analytical Approximation of the Maximal Invariant Ellipsoids for Linear Systems With Bounded Controls
,”
IEEE Trans. Autom. Control
,
54
, pp.
346
353
.10.1109/TAC.2008.2007879
8.
Sontag
,
E. D.
, and
Sussman
,
H. J.
,
1990
, “
Nonlinear Output Feedback Design for Linear Systems With Saturating Controls
,”
Proceedings of the 29th
IEEE
Conference on Decision and Control, pp.
3414
3416
.10.1109/CDC.1990.203432
9.
Sussman
,
H. J.
, and
Yang
,
Y.
,
1991
, “
On the Stabilizability of Multiple Integrators by Means of Bounded Feedback Controls
,” Proceedings of the 30th
IEEE
Conference on Decision and Control, pp.
70
72
.10.1109/CDC.1991.261255
10.
Lin
,
Z.
,
1998
, “
Global Control of Linear Systems With Saturating Actuators
,”
Automatica
,
34
, pp.
897
905
.10.1016/S0005-1098(98)00023-5
11.
Lin
,
Z.
, and
Saberi
,
A.
,
1993
, “
Semi-Global Exponential Stabilization of Linear Systems Subject to ‘Input Saturation’ via Linear Feedbacks
,”
Syst. Control Lett.
,
21
, pp.
225
239
.10.1016/0167-6911(93)90033-3
12.
Lin
,
Z.
,
Saberi
,
A.
, and
Teel
,
A. R.
,
1995
, “
Control of Linear Systems With Saturating Actuators
,” Proceedings of the 34th
IEEE
Conference on Decision and Control, pp.
285
289
.10.1109/ACC.1995.529254
13.
Hu
,
T.
,
Lin
,
Z.
, and
Qiu
,
L.
,
2001
, “
Stabilization of Exponentially Unstable Linear Systems With Saturating Actuators
,”
IEEE Trans. Autom. Control
,
46
, pp.
973
979
.10.1109/9.928610
14.
Hu
,
T.
,
Lin
,
Z.
, and
Qiu
,
L.
,
2002
, “
An Explicit Description of Null Controllable Region of Linear Systems With Saturating Actuators
,”
Syst. Control Lett.
,
30
, pp.
65
78
.10.1016/S0167-6911(02)00176-7
15.
Hu
,
T.
,
Teel
,
A. R.
, and
Zaccarian
,
L.
,
2006
, “
Stability and Performance for Saturated Systems via Quadratic and Nonquadratic Lyapunov Functions
,”
IEEE Trans. Autom. Control
,
51
, pp.
1770
1786
.10.1109/TAC.2006.884942
16.
Saberi
,
A.
,
Han
,
J.
, and
Stoorvogel
,
A. A.
,
2002
, “
Constrained Stabilization Problems for Linear Plants
,”
Automatica
,
38
, pp.
639
654
.10.1016/S0005-1098(01)00248-5
17.
Stoorvogel
,
A. A.
,
Saberi
,
A.
, and
Shi
,
G.
,
2004
, “
Properties of Recoverable Region and Semi-Global Stabilization in Recoverable Region for Linear Systems Subject to Constraints
,”
Automatica
,
40
, pp.
1481
1494
.10.1016/j.automatica.2004.04.008
18.
Teel
,
A. R.
,
1999
, “
Anti-Windup for Exponentially Unstable Linear Systems
,”
Int. J. Robust Nonlinear Control
,
9
, pp.
701
716
.10.1002/(SICI)1099-1239(199908)9:10<701::AID-RNC429>3.0.CO;2-8
19.
Lasserre
,
J. B.
,
1993
, “
Reachable, Controllable Sets and Stabilizing Control of Constrained Linear Systems
,”
Automatica
,
29
, pp.
531
536
.10.1016/0005-1098(93)90152-J
20.
Corradini
,
M. L.
,
Cristofaro
,
A.
, and
Giannoni
,
F.
,
2009
, “
Asymptotic Stabilization of Planar Unstable Linear Systems by a Finite Number of Saturating Actuators
,”
European Control Conference 2009
,
Budapest, Hungary
.
21.
Corradini
,
M. L.
,
Cristofaro
,
A.
, and
Giannoni
,
F.
,
2009
, “
On the Asymptotic Stabilization of Unstable Linear Systems With Bounded Controls
,”
Far East J. Math. Sci.
,
35
, pp.
233
247
.
22.
Benzaouia
,
A.
,
1994
, “
The Resolution of Equation XA + XBX = HX and the Pole Assignment Problem
,”
IEEE Trans. Autom. Control
,
39
, pp.
2091
2095
.10.1109/9.328817
23.
Castelan
,
E. B.
,
Gomes da Silva
,
J. M.
, Jr.
, and
Cury
,
J. E. R.
,
1996
, “
A Reduced-Order Framework Applied to Linear Systems With Constrained Controls
,”
IEEE Trans. Autom. Control
,
41
, pp.
249
255
.10.1109/9.481528
24.
Cristea
,
M.
,
2007
, “
A Note on Global Implicit Function Theorem
,”
Pure Appl. Math.
,
3
, pp.
128
143
.
25.
Antsaklis
,
P. J.
, and
Michel
,
A. N.
,
2006
,
Linear Systems
,
Birkhäuser
,
Boston
.
You do not currently have access to this content.