This paper develops and validates through a series of presentable examples, a comprehensive high-precision, and ultrafast computing concept for solving nonlinear ordinary differential equations (ODEs) and partial differential equations (PDEs) with cellular neural networks (CNN). The core of this concept is a straightforward scheme that we call "nonlinear adaptive optimization (NAOP),” which is used for a precise template calculation for solving nonlinear ODEs and PDEs through CNN processors. One of the key contributions of this work is to demonstrate the possibility of transforming different types of nonlinearities displayed by various classical and well-known nonlinear equations (e.g., van der Pol-, Rayleigh-, Duffing-, Rössler-, Lorenz-, and Jerk-equations, just to name a few) unto first-order CNN elementary cells, and thereby enabling the easy derivation of corresponding CNN templates. Furthermore, in the case of PDE solving, the same concept also allows a mapping unto first-order CNN cells while considering one or even more nonlinear terms of the Taylor's series expansion generally used in the transformation of a PDE in a set of coupled nonlinear ODEs. Therefore, the concept of this paper does significantly contribute to the consolidation of CNN as a universal and ultrafast solver of nonlinear ODEs and/or PDEs. This clearly enables a CNN-based, real-time, ultraprecise, and low-cost computational engineering. As proof of concept, two examples of well-known ODEs are considered namely a second-order linear ODE and a second order nonlinear ODE of the van der Pol type. For each of these ODEs, the corresponding precise CNN templates are derived and are used to deduce the expected solutions. An implementation of the concept developed is possible even on embedded digital platforms (e.g., field programmable gate array (FPGA), digital signal processor (DSP), graphics processing unit (GPU), etc.). This opens a broad range of applications. Ongoing works (as outlook) are using NAOP for deriving precise templates for a selected set of practically interesting ODEs and PDEs equation models such as Lorenz-, Rössler-, Navier Stokes-, Schrödinger-, Maxwell-, etc.

References

1.
Chua
,
L. O.
, and
Yang
,
L.
,
1988
, “
Cellular Neural Networks: Theory
,”
IEEE Trans. Circuits Syst.
,
35
, pp.
1257
1272
.10.1109/31.7600
2.
Chedjou
,
J. C.
, and
Kyamakya
,
K.
,
2010
, “
A Novel Method Combining Cellular Neural Networks and the Coupled Nonlinear Oscillators' Paradigm Involving a Related Bifurcation Analysis for Robust Image Contrast Enhancement in Dynamically Changing Difficult Visual Environments
,”
Physica Scripta
, Vol.
82
,
IOP Publishing Ltd.
,
Bristol
.
3.
Yu
,
S.-N.
, and
Lin
,
C.-N.
,
2010
, “
An Efficient Paradigm for Wavelet-Based Image Processing Using Cellular Neural Networks
,”
Int. J. Circ. Theor. Appl.
,
38
, pp.
527
542
.10.1002/cta.578
4.
Ip
,
H. M. D.
,
Drakakis
,
E. M.
, and
Bharath
,
A. A.
,
2011
, “
Preliminary Results From an Analog Implementation of First-Order TDCNN Dynamics
,”
Int. J. Circ. Theor. Appl.
,
39
, pp.
665
678
.10.1002/cta.668
5.
Tar
,
Á.
,
Gandhi
,
G.
, and
Cserey
,
G.
,
2009
, “
Hardware Implementation of CNN Architecture-Based Test Bed for Studying Synchronization Phenomenon in Oscillatory and Chaotic Networks
,”
Int. J. Circ. Theor. Appl.
,
37
, pp.
529
542
.10.1002/cta.568
6.
Fernández-Berni
,
J.
, and
Carmona-Galán
,
R.
,
2009
, “
On the Implementation of Linear Diffusion in Transconductance-Based Cellular Nonlinear Networks
,”
Int. J. Circ. Theor. Appl.
,
37
, pp.
543
567
.10.1002/cta.564
7.
Kocsárdi
,
S.
,
Nagy
,
Z.
,
Csík
,
Á.
, and
Szolgay
,
P.
,
2009
, “
Simulation of 2D Inviscid, Adiabatic, Compressible Flows on Emulated Digital CNN-UM
,”
Int. J. Circ. Theor. Appl.
,
37
, pp.
569
585
.10.1002/cta.565
8.
Rák
,
Á.
,
Soós
,
B. G.
, and
Cserey
,
G.
,
2009
, “
Stochastic Bitstream-Based CNN and Its Implementation on FPGA
,”
Int. J. Circ. Theor. Appl.
,
37
, pp.
587
612
.10.1002/cta.569
9.
Singh
,
V.
,
2009
, “
Global Robust Stability of Interval Delayed Neural Networks: Modified Approach
,”
Int. J. Circ. Theor. Appl.
,
37
, pp.
995
1007
.10.1002/cta.523
10.
Karacs
,
K.
,
Prószéky
,
G.
, and
Roska
,
T.
,
2009
, “
Cellular Wave Computer Algorithms With Spatial Semantic Embedding for Handwritten Text Recognition
,”
Int. J. Circ. Theor. Appl.
,
37
, pp.
1019
1050
.10.1002/cta.485
11.
Di Marco
,
M.
,
Forti
,
M.
,
Grazzini
,
M.
, and
Pancioni
,
L.
,
2012
, “
Łojasiewicz Inequality and Exponential Convergence of the Full-Range Model of CNNs
,”
Int. J. Circ. Theor. Appl.
,
40
, pp.
409
419
.10.1002/cta.717
12.
Wagner
,
R.
,
Molnar
,
A.
, and
Werblin
,
F. S.
,
2009
, “
Analysis of the Interaction Between the Retinal ON and OFF Channels Using CNN-UM Models
,”
Int. J. Circ. Theor. Appl.
,
37
, pp.
87
108
.10.1002/cta.498
13.
Marco
,
M. D.
,
Forti
,
M.
,
Grazzini
,
M.
,
Pancioni
,
L.
, and
Premoli
,
A.
,
2011
, “
Comparison of Convergence and Stability Properties for the State and Output Solutions of Neural Networks
,”
Int. J. Circ. Theor. Appl.
,
39
, pp.
751
774
.10.1002/cta.657
14.
Uzunova
,
M.
,
Jolly
,
D.
,
Nikolov
,
E.
, and
Boumediene
,
K.
,
2008
, “
The Macroscopic LWR Model of the Transport Equation Viwed as a Distributed Parameter System
,”
Proceedings of the 5th International Conference on Soft Computing as Transdisciplinary Science and Technology
(
CSTST
), pp.
572
576
.10.1145/1456223.1456339
15.
Zhu
,
S. C.
, and
Mumford
,
D.
,
1998
, “
GRADE: Gibbs Reaction and Diffusion Equations
,”
Proceedings of the 6th International Conference on Computer Vision
(
ICCV
), pp.
847
854
.10.1109/ICCV.1998.710816
16.
Aubert
,
G.
, and
Kornprobst
,
P.
,
2006
,
Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations
, Vol.
147
,
Springer-Verlag
, New York.
17.
Zarándy
,
Á.
, and
Rekeczky
,
C.
,
2011
, “
2D Operators on Topographic and Non-Topographic Architectures—Implementation, Efficiency Analysis, and Architecture Selection Methodology
,”
Int. J. Circ. Theor. Appl.
,
39
, pp.
983
1005
.10.1002/cta.681
18.
Abassy
,
T. A.
,
El-Tawil
,
M. A.
, and
El-Zoheiry
,
H.
,
2007
, “
Exact Solutions of Some Nonlinear Partial Differential Equations Using the Variational Iteration Method Linked With Laplace Transforms and the Pade Technique
,”
Comput. Math. Appl.
,
54
, pp.
940
954
.10.1016/j.camwa.2006.12.067
19.
Sweilam
,
N. H.
,
2007
, “
Variational Iteration Method for Solving Cubic Nonlinear Schrodinger Equation
,”
J. Comput. Appl. Math.
,
207
, pp.
155
163
.10.1016/j.cam.2006.07.023
20.
Striebel
,
M.
,
Bartel
,
A.
, and
Gunther
,
M.
,
2009
, “
A Multirate ROW-Scheme for Index-1 Network Equations
,”
Appl. Numer. Math.
,
59
, pp.
800
814
.10.1016/j.apnum.2008.03.014
21.
Roska
,
T.
Chua
,
L. O.
,
Wolf
,
D.
,
Kozek
,
T.
,
Tetzlaff
,
R.
, and
Puffer
,
F.
,
1995
, “
Simulating Nonlinear Waves and Partial Differential Equations via CNN-Part II—Basic Techniques
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
,
42
, pp.
816
820
.10.1109/81.473590
22.
Hopfield
,
J. J.
, and
Tank
,
D. W.
,
1985
, “
Neural Computation of Decisions in Optimization Problems
,”
Biol. Cybern.
,
52
, pp.
141
152
.
23.
Smith
,
K. A.
,
1999
, “
Neural Network for Combinatorial Optimization: A Review of More Than a Decade of Research
,”
INFORMS J. Comput.
,
11
(
1
), pp.
15
34
.10.1287/ijoc.11.1.15
24.
Del Negro
,
C.
,
Fortuna
,
L.
, and
Vicari
,
A.
,
2005
, “
Modelling Lava Flows by Cellular Nonlinear Networks (CNN): Preliminary Results
,”
Nonlinear Processes Geophys.
,
12
, pp.
505
513
.10.5194/npg-12-505-2005
25.
Krstic
,
I.
,
Reljin
,
B.
,
Kostic
,
P.
, and
Kandic
,
D.
,
2002
, “
Application of Cellular Neural Networks in Stress Analysis of Prismatic Bars Subjected to Torsion
,” Proceedings of the 6th Seminar on Neural Network Applications in Electrical Engineering (
NEUREL
-02), pp.
129
134
.10.1109/NEUREL.2002.1057982
26.
Niu
,
J.-H.
,
Wang
,
H.-Z.
,
Zhang
,
H.-X.
,
Yan
,
J.-Y.
, and
Zhu
,
Y.-S.
,
2001
, “
Cellular Neural Network Analysis for Two-Dimensional Bioheat Transfer Equation
,”
Med. Biol. Eng. Comput.
,
39
, pp.
601
604
.10.1007/BF02345153
27.
Kozek
,
T.
,
Chua
,
L. O.
,
Roska
,
T.
,
Wolf
,
D.
,
Tetzlaff
,
R.
,
Puffer
,
F.
, and
Lotz
,
K.
,
1995
, “
Simulating Nonlinear Waves and Partial Differential Equations via CNN-Part I: Typical Examples
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
,
42
, pp.
807
815
.10.1109/81.473591
28.
Kozek
,
T.
, and
Roska
,
T.
,
1994
, “
A Double Time-Scale CNN for Solving 2-D Navier-Stokes Equations
,”
CNNA
-94
3rd IEEE International Workshop on Cellular Neural Networks and Their Applications
.10.1109/CNNA.1994.381668
29.
Puffer
,
F.
,
Tetzlaff
,
R.
, and
Wolf
,
D.
,
1995
, “
A Learning Algorithm for Cellular Neural Networks (CNN) Solving Nonlinear Partial Differential Equations
,”
ISSSE
Proceedings
.10.1109/ISSSE.1995.498041
30.
Aarts
,
P. L.
, and
van der Veer
,
P.
,
2001
, “
Neural Network Method for Solving Partial Differential Equations
,”
J. Neural Process. Lett.
,
14
(
3
), pp.
261
271
.10.1023/A:1012784129883
31.
Tsoulos
,
I. G.
,
Gavrilis
,
D.
, and
Glavas
,
E.
,
2009
, “
Solving Differential Equations With Constructed Neural Networks
,”
J. Neurocomput.
,
72
, pp.
2385
2391
.10.1016/j.neucom.2008.12.004
32.
Chua
,
L. O.
,
Hasler
,
M.
,
Moschytz
,
G. S.
, and
Neirynck
,
J.
,
1995
, “
Autonomous Cellular Neural Networks: A Unified Paradigm for Pattern Formation and Active Wave Propagation
,”
IEEE Transactions Circuits Syst., I: Fundam. Theory Appl.
,
42
(
10
), pp.
559
577
.10.1109/81.473564
33.
Puffer
,
F.
,
Tetzlaff
,
R.
, and
Wolf
,
D.
,
1996
, “
Modeling Nonlinear Systems With Cellular Neural Networks
,”
IEEE Transactions on Acoustics, Speech, and Signal
Processing (
ICASSP
-96), Vol.
6
, pp.
3513
3516
.10.1109/ICASSP.1996.550786
34.
Nossek
,
J. A.
,
1996
, “
Design and Learning With Cellular Neural Networks
,”
Int. J. Circ. Theor. Appl.
,
24
, pp.
15
24
.10.1002/(SICI)1097-007X(199601/02)24:1<15::AID-CTA900>3.0.CO;2-5
35.
Chedjou
,
J. C.
,
Fotsin
,
H. B.
,
Woafo
,
P.
, and
Domngang
,
S.
,
2001
, “
Analog Simulation of the Dynamics of a van der Pol Oscillator Coupled to a Duffing Oscillator
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
,
48
, pp.
748
757
.10.1109/81.928157
36.
Chedjou
,
J. C.
,
Kyamakya
,
K.
,
Moussa
,
I.
,
Kuchenbecker
,
H.-P.
, and
Mathis
,
W.
,
2006
, “
Behavior of a Self-Sustained Electromechanical Transducer and Routes to Chaos
,”
ASME J. Vib. Acoust.
,
128
(3)
, pp.
282
293
.10.1115/1.2172255
37.
Chedjou
,
J. C.
,
Kana
,
L. K.
,
Moussa
,
I.
,
Kyamakya
,
K.
, and
Laurent
,
A.
,
2006
, “
Dynamics of a Quasiperiodically Forced Rayleigh Oscillator
,”
ASME J. Dyn. Sys., Meas., Control
,
128
(3), pp.
600
607
.10.1115/1.2232684
38.
Chedjou
,
J. C.
,
Kyamakya
,
K.
,
Mathis
,
W.
,
Moussa
,
I.
,
Fomethe
,
A.
, and
Fono
,
V. A.
,
2008
, “
Chaotic Synchronization in Ultra-Wide-Band Communication and Positioning Systems
,”
ASME J. Vib. Acoust.
,
130
(1)
, p.
011012
.10.1115/1.2827356
39.
Chedjou
,
J. C.
,
Kyamakya
,
K.
,
Latif
,
M. A.
,
Khan
,
U. A.
,
Moussa
,
I.
, and
Tuan
,
D. T.
,
2009
, “
Solving Stiff Ordinary Differential Equations and Partial Differential Equations Using Analog Computing Based on Cellular Neural Networks
,”
ISAST Trans. Comput. Intell. Syst.
,
1
, pp.
38
46
.
You do not currently have access to this content.