A power series expression for the forward dynamics of a closed kinematic chain provides an explicit time-step update of the system state. The resulting numerical differential equation solver applies kinematic constraints to the power series terms for acceleration and higher derivatives of motion. Integrating acceleration determines velocity and position time histories that approximate the constraints to a high degree of precision when using a high order of the expansion. When high precision is not required, a lower order achieves shorter computation times, but that condition results in violation of the constraints in the absence of any correction. Projecting the velocities and positions onto the constraint manifold after each time step produces step changes. This paper determines which choices of linear subspace for this projection give step changes that are equal to the residues of truncating the power series solution for the kinematic portion of the problem. The limit of that power series gives position and velocity time histories that approximate the dynamics while giving an exact kinematic solution. Thus projection onto the constraints in this procedure determines sample values of an underlying solution for the motion trajectories, where that underlying solution is continuous in both velocity and position and also satisfies the kinematic constraints at all times. This property is confirmed by numerical simulation of a Clemens constant-velocity coupling.

References

References
1.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
1
(
1
) pp.
1
16
.10.1016/0045-7825(72)90018-7
2.
Gear
,
C.
,
Leimkuhler
,
B.
, and
Gupta
,
G.
,
1985
, “
Automatic Integration of Euler-Lagrange Equations With Constraints
,”
J. Comput. Appl. Math.
,
12-13
, pp.
77
90
.10.1016/0377-0427(85)90008-1
3.
Führer
,
C.
, and
Leimkuhler
,
B.
,
1991
, “
Numerical Solution of Differential-Algebraic Equations for Constrained Mechanical Motion
,”
Numer. Math.
,
59
(
1
), pp.
55
69
.10.1007/BF01385770
4.
Ascher
,
U. M.
,
Chin
,
H.
, and
Reich
,
S.
,
1994
, “
Stabilization of DAEs and Invariant Manifolds
,”
Numer. Math.
,
67
(
2
), pp.
131
149
.10.1007/s002110050020
5.
Milenkovic
,
P.
,
2011
, “
Solution of the Forward Dynamics of a Single-Loop Linkage Using Power Series
,”
ASME J. Dyn. Sys., Meas., Control
,
133
(
6
), p.
061002
.10.1115/1.4004766
6.
Milenkovic
,
P.
,
2012
, “
Series Solution for Finite Displacement of Single-Loop Spatial Linkages
,”
ASME J. Mechanisms Robotics
,
4
(
2
), p.
021016
.10.1115/1.4006193
7.
Sheth
,
P. N.
, and
Uicker
,
J. J.
,
1972
, “
IMP (Integrated Mechanisms Program), A Computer-Aided Design Analysis System for Mechanisms and Linkage
,”
ASME J. Eng. Industry
,
94
(
2
), pp.
454
464
.10.1115/1.3428176
8.
Elmqvist
,
H.
, and
Otter
,
M.
,
1994
, “
Methods for Tearing Systems of Equations in Object-Oriented Modeling,” Proceedings ESM’94, European Simulation Multiconference
, Barcelona, Spain, pp.
1
3
.
9.
Kecskemethy
,
A.
,
Krupp
,
T.
, and
Hiller
,
M.
,
1997
, “
Symbolic Processing of Multiloop Mechanism Dynamics Using Closed-Form Kinematics Solutions
,”
Multibody Syst. Dyn.
,
1
(
1
), pp.
23
45
.10.1023/A:1009743909765
10.
Anderson
,
K. S.
, and
Critchley
,
J.
,
2003
, “
Improved Order-N' Performance Algorithm for the Simulation of Constrained Multi-Rigid-Body Dynamic Systems
,”
Multibody Syst. Dyn.
,
9
(
2
), pp.
185
212
.10.1023/A:1022566107679
11.
Schiehlen
,
W.
,
1997
, “
Multibody System Dynamics: Roots and Perspectives
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
149
188
.10.1023/A:1009745432698
12.
Negrut
,
D.
,
Haug
,
E. J.
, and
German
,
H. C.
,
2003
, “
An Implicit Runge–Kutta Method for Integration of Differential Algebraic Equations of Multibody Dynamics
,”
Multibody Syst. Dyn.
,
9
(
2
), pp.
121
142
.10.1023/A:1022506312444
13.
Blajer
,
W.
,
2002
, “
Elimination of Constraint Violation and Accuracy Aspects in Numerical Simulation of Multibody Systems
,”
Multibody Syst. Dyn.
,
7
(
3
), pp.
265
284
.10.1023/A:1015285428885
14.
Han
,
H. S.
, and
Seo
,
J. H.
,
2004
, “
Design of a Multi-Body Dynamics Analysis Program Using the Object-Oriented Concept
,”
Adv. Eng. Software
,
35
(
2
), pp.
95
103
.10.1016/j.advengsoft.2003.10.001
15.
Denavit
,
J.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.
16.
Uicker
,
J. J.
, Jr
.,
Denavit
,
J.
, and
Hartenberg
,
R.
,
1964
, “
An Iterative Method for the Displacement Analysis of Spatial Mechanisms
,”
ASME J. Appl. Mech.
,
31
(2)
, pp.
309
314
.10.1115/1.3629602
17.
Paul
,
R. P.
,
1981
,
Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators
,
The MIT Press
,
Cambridge, MA
.
18.
Park
,
F. C.
, and
Martin
,
B. J.
,
1994
, “
Robot Sensor Calibration: Solving AX= XB on the Euclidean Group
,”
IEEE Trans. Rob. Autom.
,
10
(
5
), pp.
717
721
.10.1109/70.326576
19.
Selig
,
J.
,
2005
,
Geometric Fundamentals of Robotics
,
2nd ed.
,
Springer
,
New York
.
20.
Iowa Department of Transportation, Office of Design
,
2010
, “
Horizontal Curves
,”
Design Manual, Chap. 2(2A-1)
.
21.
McCarthy
,
J. M.
,
2000
,
Geometric Design of Linkages
,
Springer
,
New York.
22.
Dopico
,
D.
,
Gonzalez
,
M.
, and
Lugris
,
U.
,
2006
, “
Energy Conserving and Projection Methods for the Real-Time Dynamics of Multibody Systems
,”
Proceedings of ACMD06, Paper No. A00589
.
23.
Milenkovic
,
P.
,
2009
, “
Triangle Pseudocongruence in Constraint Singularity of Constant-Velocity Couplings
,”
ASME J. Mechanisms Robotics
,
1
(
2
), p.
021006
.10.1115/1.3046142
24.
Milenkovic
,
P.
,
2011
, “
Nonsingular Spherically Constrained Clemens Linkage Wrist
,”
ASME J. Mechanisms Robotics
,
3
(
1
), p.
011014
.10.1115/1.4003415
25.
Skokos
,
C.
,
2001
, “
Alignment Indices: A New, Simple Method for Determining the Ordered or Chaotic Nature of Orbits
,”
J. Phys. A
,
34
, pp.
10029
10043
.10.1088/0305-4470/34/47/309
26.
Xie
,
Y.
, and
Steven
,
G. P.
,
1994
, “
Instability, Chaos, and Growth and Decay of Energy of Time-Stepping Schemes for Non-Linear Dynamic Equations
,”
Commun. Numer. Methods Eng.
,
10
(
5
), pp.
393
401
.10.1002/cnm.1640100505
You do not currently have access to this content.