This paper presents a methodology for classification of two-phase flow patterns in fluid systems, which takes the measurements of an in situ ultrasonic sensor as inputs. In contrast to the common practice of having an array of ultrasonic detectors, the underlying algorithm requires only a single sensor hardware in combination with an integrated software of signal conditioning, feature extraction, and pattern classification. The proposed method is noninvasive and can be implemented in a variety of industrial applications (e.g., petrochemical processes and nuclear power plants). This concept of flow pattern classification is experimentally validated on a laboratory test apparatus.

References

References
1.
Hewitt
,
G.
,
Delhaye
,
J.
, and
Zuber
,
N.
,
1986
,
Multiphase Science and Technology
, Vol.
2
,
Springer
,
New York, NY
.
2.
Bieberle
,
M.
,
Schleicher
,
E.
, and
Hampel
,
U.
,
2008
, “
Simulation Study on Electron Beam X-Ray CT Arrangements for Two-Phase Flow Measurements
,”
Meas. Sci. Technol.
,
19
, p.
094003
.10.1088/0957-0233/19/9/094003
3.
Schleicher
,
E.
,
Silva
,
M. J.
,
Thiele
,
S.
,
Li
,
A.
,
Wollrab
,
E.
, and
Hampel
,
U.
,
2008
, “
Design of an Optical Tomograph for the Investigation of Single- and Two-Phase Pipe Flows
,”
Meas. Sci. Technol.
,
19
, p.
094006
.10.1088/0957-0233/19/9/094006
4.
Mi
,
Y.
,
Ishii
,
M.
, and
Tsoukalas
,
B.
,
2001
, “
Flow Regime Identification Methodology With Neural Networks and Two-Phase Flow Models
,”
Nucl. Eng. Des.
,
204
, pp.
87
100
.10.1016/S0029-5493(00)00325-3
5.
Warsito
,
W.
, and
Fan
,
L.-S.
,
2001
, “
Neural Network Based Multi-Criterion Optimization Image Reconstruction Technique for Imaging Two- and Three-Phase Flow Systems Using Electrical Capacitance Tomography
,”
Meas. Sci. Technol.
,
12
, pp.
2198
2210
.10.1088/0957-0233/12/12/323
6.
Gao
,
Z.
, and
Jin
,
N.
,
2009
, “
Flow-Pattern Identification and Nonlinear Dynamics of Gas-Liquid Two-Phase Flow in Complex Networks
,”
Phys. Rev. E: Nonlin. Plasma Phys., Fluid, Dyn., Rel. Topics
,
79
(
Pt 2
), p.
066303
.10.1103/PhysRevE.79.066303
7.
Chakraborty
,
S.
,
Keller
,
E.
,
Talley
,
J.
,
Srivastav
,
A.
,
Ray
,
A.
, and
Kim
,
S.
,
2009
, “
Void Fraction Measurement in Two-Phase Processes via Symbolic Dynamic Filtering of Ultrasonic Signals
,”
Meas. Sci. Technol.
,
20
, p.
023001
.10.1088/0957-0233/20/2/023001
8.
Ray
,
A.
,
2004
, “
Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection
,”
Signal Process.
,
84
, pp.
1115
1130
.10.1016/j.sigpro.2004.03.011
9.
Vidal
,
E.
,
Thollard
,
F.
,
de la Higuera
,
C.
,
Casacuberta
,
F.
, and
Carrasco
,
R.
,
2005
, “
Probabilistic Finite-State Machines—Part I and Part II
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
27
(
7
), pp.
1013
1039
.10.1109/TPAMI.2005.147
10.
Sarkar
,
S.
,
Mukherjee
,
K.
,
Jin
,
X.
,
Singh
,
D.
, and
Ray
,
A.
,
2012
, “
Optimization of Symbolic Feature Extraction for Pattern Classification
,”
Signal Process.
,
92
(
3
), pp.
625
635
.10.1016/j.sigpro.2011.08.013
11.
Rajagopalan
,
V.
, and
Ray
,
A.
,
2006
, “
Symbolic Time Series Analysis via Wavelet-Based Partitioning
,”
Signal Process.
,
86
(
11
), pp.
3309
3320
.10.1016/j.sigpro.2006.01.014
12.
Freitas
,
A.
,
2002
,
Data Mining and Knowledge Discovery With Evolutionary Algorithms
,
Springer-Verlag
,
Berlin
.
13.
Bishop
,
C.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
New York, NY
.
14.
Miettinen
,
K.
,
1998
,
Nonlinear Multiobjective Optimization
,
Kluwer International
,
Boston, MA
.
15.
Brunk
,
H.
,
1975
,
An Introduction to Mathematical Statistics
,
Xerox College Publishing
,
Lexington, MA
.
You do not currently have access to this content.