The problem of optimal sampled-data vibration control for nonlinear systems with time delays and uncertainties is considered. With the purpose of simplifying the nonlinear optimal vibration control (NOVC) design, the original time-delay sampled-data system is converted into a discrete-time nondelayed system first, as well as the nonlinear and uncertain terms are treated as external excitations. Therefore, the design procedure for NOVC law is reduced and the successive approximation approach is sequentially developed in it. The obtained NOVC law is derived from a Riccati equation, a Stein equation, and sequences of adjoint vector difference equations. It is combined with a feedforward term, the nonlinearity and uncertainty compensator terms, and some control memory terms, which compensate for the effects produced by the disturbance, the nonlinearity and uncertainties, and the time delays. Moreover, the existence and uniqueness of NOVC law are proved and the stability of the closed-loop system is analyzed. In order to make the controller physically realizable, an observer is constructed and the corresponding dynamical control law is given. Furthermore, by this means, the NOVC law for a sampled-data quarter-car suspension model with actuator and sensor delays is designed. The results of numerical simulations illustrate that the NOVC gives satisfactory conclusions in effectiveness of suspension performance responses and feasibility of the proposed design approach.

References

References
1.
Wilson
,
D. A.
,
Sharp
,
R. S.
, and
Hassan
,
S. A.
,
1986
, “
The Application of Linear Optimal Control Theory to the Design of Active Automotive Suspensions
,”
Veh. Syst. Dyn.
,
15
(
2
), pp.
105
118
.10.1080/00423118608968846
2.
Elbeheiry
,
E. M.
, and
Karnopp
,
D. C.
,
1996
, “
Optimal Control of Vehicle Random Vibration With Constrained Suspension Deflection
,”
J. Sound Vib.
,
189
(
5
), pp.
547
564
.10.1006/jsvi.1996.0036
3.
Marzbanrad
,
J.
,
Ahmadi
,
G.
,
Zohoor
,
H.
, and
Hojjat
,
Y.
,
2004
, “
Stochastic Optimal Preview Control of a Vehicle Suspension
,”
J. Sound Vib.
,
275
(
3–5
), pp.
973
990
.10.1016/S0022-460X(03)00812-5
4.
Mirzaei
,
M.
,
Alizadeh
,
G.
,
Eslamian
,
M.
, and
Azadi
,
S.
,
2008
, “
An Optimal Approach to Nonlinear Control of Vehicle Yaw Dynamics
,”
Proc. Inst. Mech. Eng., Part I
,
222
(
4
), pp.
217
229
.10.1243/09596518JSCE444
5.
Du
,
H.
, and
Zhang
,
N.
,
2007
, “
H Control of Active Vehicle Suspensions With Actuator Time Delay
,”
J. Sound Vib.
,
301
(
1–2
), pp.
236
252
.10.1016/j.jsv.2006.09.022
6.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2003
, “
Structured H2 Optimization of Vehicle Suspensions Based on Multi-Wheel Models
,”
Veh. Syst. Dyn.
,
40
(
5
), pp.
351
371
.10.1076/vesd.40.5.351.17914
7.
Fischer
,
D.
, and
Isermann
,
R.
,
2004
, “
Mechatronic Semi-Active and Active Vehicle Suspensions
,”
Control Eng. Pract.
,
12
(
11
), pp.
1353
1367
.10.1016/j.conengprac.2003.08.003
8.
Narayanan
,
S.
, and
Senthil
,
S.
,
1998
, “
Stochastic Optimal Active Control of a 2-DOF Quarter Car Model With Nonlinear Passive Suspension Elements
,”
J. Sound Vib.
,
211
(
3
), pp.
495
506
.10.1006/jsvi.1997.1396
9.
Hassanzadeh
,
I.
,
Alizadeh
,
G.
,
Shirjoposht
,
N. P.
, and
Hashemzadeh
,
F.
,
2010
, “
A New Optimal Nonlinear Approach to Half Car Active Suspension Control
,”
IACSIT Int. J. Eng. Technol.
,
2
(
1
), pp.
78
84
.
10.
Kim
,
C.
, and
Ro
,
P. I.
,
1998
, “
A Sliding Mode Controller for Vehicle Active Suspension Systems With Non-Linearities
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
212
(
D2
), pp.
79
92
.10.1243/0954407981525812
11.
Narayanan
,
S.
, and
Raju
,
G. V.
,
1992
, “
Active Control of Non-Stationary Response of Vehicles With Nonlinear Suspensions
,”
Veh. Syst. Dyn.
,
21
(
1
), pp.
73
88
.10.1080/00423119208969003
12.
Chen
,
Y. C.
, and
Huang
,
A. C.
,
2005
, “
Adaptive Sliding Control of Non-Autonomous Active Suspension Systems With Time-Varying Loadings
,”
J. Sound Vib.
,
282
(
3–5
), pp.
1119
1135
.10.1016/j.jsv.2004.03.055
13.
Choi
,
S.-B.
, and
Han
,
S.-S.
,
2003
, “
H Control of Electrorheological Suspension System Subjected to Parameter Uncertainties
,”
Mechatronics
,
13
(
7
), pp.
639
657
.10.1016/S0957-4158(02)00035-1
14.
Gaspar
,
P.
,
Szaszi
,
I.
, and
Bokor
,
J.
,
2003
, “
Design of Robust Controllers for Active Vehicle Suspensions Using the Mixed μ Synthesis
,”
Veh. Syst. Dyn.
,
40
(
4
), pp.
193
228
.10.1076/vesd.40.2.193.16541
15.
Tuan
,
H. D.
,
Ono
,
E.
,
Apkarian
,
P.
, and
Hosoe
,
S.
,
2001
, “
Nonlinear H Control for an Integrated Suspension System via Parameterized Linear Matrix Inequality Characterizations
,”
IEEE Trans. Control Syst. Technol.
,
9
(
1
), pp.
175
185
.10.1109/87.896758
16.
Karlsson
,
N.
,
Dahleh
,
M.
, and
Hrovat
,
D.
,
2001
, “
Nonlinear H Control of Active Suspensions
,”
Proceedings of American Control Conference
,
Arlington
, Vol.
5
, pp.
3329
3334
.
17.
Huang
,
A. C.
, and
Chen
,
Y. C.
,
2004
, “
Adaptive Sliding Control for Single-Link Flexible-Joint Robot With Mismatched Uncertainties
,”
IEEE Trans. Control Syst. Technol.
,
12
(
5
), pp.
770
775
.10.1109/TCST.2004.826968
18.
Alleyne
,
A.
, and
Hedrick
,
K.
,
1995
, “
Nonlinear Adaptive Control of Active Suspensions
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
), pp.
94
101
.10.1109/87.370714
19.
Litak
,
G.
,
Borowiec
,
M.
,
Michael
,
I. F.
, and
Szabelski
,
K.
,
2008
, “
Chaotic Vibration of a Quarter-Car Model Excited by the Road Surface Profile
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
7
), pp.
1373
1383
.10.1016/j.cnsns.2007.01.003
20.
Li
,
F.
, and
Sun
,
J.
,
2011
, “
Controllability of Boolean Control Networks With Time Delays in States
,”
Automatica
,
47
(
3
), pp.
603
607
.10.1016/j.automatica.2011.01.040
21.
Gao
,
H.
,
Chen
,
T.
, and
Lam
,
J.
,
2008
, “
A New Delay System Approach to Network-Based Control
,”
Automatica
,
44
(
1
), pp.
39
52
.10.1016/j.automatica.2007.04.020
22.
Huang
,
D.
, and
Nguang
,
S. K.
,
2008
, “
State Feedback Control of Uncertain Networked Control Systems With Random Time Delays
,”
IEEE Trans. Autom. Control
,
53
(
3
), pp.
829
834
.10.1109/TAC.2008.919571
23.
Riccard
,
J. P.
,
2003
, “
Time-Delay Systems: An Overview of Some Recent Advances and Open Problems
,”
Automatica
,
39
(
10
), pp.
1667
1694
.10.1016/S0005-1098(03)00167-5
24.
Du
,
H.
,
Zhang
,
N.
, and
Lam
,
J.
,
2008
, “
Parameter-Dependent Input-Delayed Control of Uncertain Vehicle Suspensions
,”
J. Sound Vib.
,
317
(
3–5
), pp.
236
252
.10.1016/j.jsv.2008.03.066
25.
Chen
,
W. H.
,
Ballance
,
D. J.
, and
Gawthrop
,
P. J.
,
2003
, “
Optimal Control of Nonlinear Systems: A Predictive Control Approach
,”
Automatica
,
39
(
4
), pp.
633
641
.10.1016/S0005-1098(02)00272-8
26.
Lu
,
P.
,
1995
, “
Optimal Predictive Control of Continuous Nonlinear Systems
,”
Int. J. Control
,
62
(
3
), pp.
633
649
.10.1080/00207179508921561
27.
Ali
,
F.
, and
Padhi
,
R.
,
2011
, “
Optimal Blood Glucose Regulation of Diabetic Patients Using Single Network Adaptive Critics
,”
Opt. Control Appl. Methods
,
32
(
2
), pp.
196
214
.10.1002/oca.920
28.
Milasi
,
R. M.
,
Yazdanpanah
,
M.-J.
, and
Lucas
,
C.
,
2008
, “
Nonlinear Optimal Control of Washing Machine Based on Approximate Solution of HJB Equation
,”
Opt. Control Appl. Methods
,
29
(
1
), pp.
1
18
.10.1002/oca.810
29.
Padhi
,
R.
,
Xin
,
M.
, and
Balakrishnan
,
S. N.
,
2008
, “
Reduced-Order Suboptimal Control Design for a Class of Nonlinear Distributed Parameter Systems Using POD and θ-D Techniques
,”
Opt. Control Appl. Methods
,
29
(
3
), pp.
191
224
.10.1002/oca.822
30.
Cimen
,
T.
, and
Banks
,
S. P.
,
2004
, “
Global Optimal Feedback Control for General Nonlinear Systems With Nonquadratic Performance Criteria
,”
Syst. Control Lett.
,
53
(
5
), pp.
327
346
.10.1016/j.sysconle.2004.05.008
31.
Cimen
,
T.
, and
Banks
,
S. P.
,
2004
, “
Nonlinear Optimal Tracking Control With Application to Super-Tankers for Autopilot Design
,”
Automatica
,
40
(
11
), pp.
1845
1863
.10.1016/j.automatica.2004.05.015
32.
Jaddu
,
H.
, and
Vlach
,
M.
,
2002
, “
Successive Approximation Method for Non-Linear Optimal Control Problems With Application to a Container Crane Problem
,”
Opt. Control Appl. Methods
,
23
(
5
), pp.
275
288
.10.1002/oca.713
33.
Göllmann
,
L.
, and
Maurer
,
H.
,
2009
, “
Optimal Control Problems With Delays in State and Control Variables Subject to Mixed Control-State Constrains
,”
Opt. Control Appl. Methods
,
30
(
4
), pp.
341
365
.10.1002/oca.843
34.
Wei
,
G.
,
Wang
,
Z.
,
Shu
,
H.
, and
Fang
,
J.
,
2006
, “
Robust H Control of Stochastic Time-Delay Jumping Systems With Nonlinear Disturbances
,”
Opt. Control Appl. Methods
,
27
(
5
), pp.
255
271
.10.1002/oca.780
35.
Olbrot
,
A. W.
,
1978
, “
Stabilizability, Detectability, and Spectrum Assignment for Linear Autonomous Systems With General Time Delays
,”
IEEE Trans. Autom. Control
,
AC-23
(
5
), pp.
887
890
.10.1109/TAC.1978.1101879
36.
Fiagbedzi
,
Y. A.
, and
Pearson
,
A. E.
,
1986
, “
Feedback Stabilization of Linear Autonomous Time Lag Systems
,”
IEEE Trans. Autom. Control
,
AC-31
(
9
), pp.
847
855
.10.1109/TAC.1986.1104417
37.
Mondie
,
S.
, and
Michiels
,
W.
,
2003
, “
Finite Spectrum Assignment of Unstable Time-Delay Systems With a Safe Implementation
,”
IEEE Trans. Autom. Control
,
48
(
12
), pp.
2207
2212
.10.1109/TAC.2003.820147
38.
Lei
,
J.
,
2007
, “
Research on Optimal Disturbance Rejection Methods for Systems With Control Delay
,” M.E. dissertation,
Ocean University of China
,
Qingdao, China
(in Chinese).
39.
Lei
,
J.
,
2010
, “
Study on Optimal Vibration Control for Time-Delay Systems With Application to Vehicle Suspension Systems
,” D.E. dissertation,
Ocean University of China
,
Qingdao, China
(in Chinese).
40.
Lei
,
J.
,
2011
, “
Suboptimal Vibration Control for Nonlinear Suspension Systems Based on In-Vehicle Networks
,”
Proceedings of 2011 International Conference on System Science and Engineering
,
Macau, China
, pp.
239
244
.
41.
Sujit
,
K. M.
,
1977
, “
The Matrix Equation AXB+CXD=E
,”
SIAM J. Appl. Math.
,
32
(
4
), pp.
823
825
.10.1137/0132070
42.
Pedro
,
J. O.
, and
Dahunsi
,
O. A.
,
2011
, “
Neural Network Based Feedback Linearization Control of a Servo-Hydraulic Vehicle Suspension System
,”
Int. J. Appl. Math Comput. Sci.
,
21
(
1
), pp.
137
147
.10.2478/v10006-011-0010-5
43.
Du
,
H.
,
Lam
,
J.
, and
Sze
,
K. Y.
,
2003
, “
Non-Fragile Output Feedback H Vehicle Suspension Control Using Genetic Algorithm
,”
Eng. Applic. Artif. Intell.
,
16
(
7–8
), pp.
667
680
.10.1016/j.engappai.2003.09.008
44.
Lin
,
Y. C.
, and
Khalil
,
H. K.
,
1992
, “
Two-Time-Scale Design of Active Suspension Control Using Acceleration Feedback
,” Proceedings of 1st
IEEE
Conference on Control Applications
,
Dayton
, OH, Vol.
2
, pp.
884
889
.10.1109/CCA.1992.269806
45.
Hrovat
,
D.
,
1997
, “
Survey of Advanced Suspension Developments and Related Optimal Control Applications
,”
Automatica
,
33
(
10
), pp.
1781
1817
.10.1016/S0005-1098(97)00101-5
46.
Elbeheir
,
E. M.
, and
Karnop
,
D. C.
,
1996
, “
Optimal Control of Vehicle Random Vibration With Constrained Suspension Deflection
,”
J. Sound Vib.
,
189
(
5
), pp.
547
564
.10.1006/jsvi.1996.0036
You do not currently have access to this content.