This paper offers a systematic framework for the design of suboptimal integer-order controllers based on fractional-order structures. The proposed approach is built upon the integer-order approximations that are traditionally used to implement fractional-order controllers after they are designed. Accordingly, the fractional-order structures are exploited to derive a suitable parameterization for a fixed-structure integer-order controller. The parameters, which describe the structure of the fixed-order integer controller, are the same as those used to describe the original fractional structure. Optimal tuning is then performed in the parameter space of the fractional structure and the resultant set of optimum parameters will determine the optimal integer-order controller. The proposed approach outperforms traditional implementations of optimal fractional controllers and presents an alternative that attempts to capture merits of both fractional-order and integer-order structures.

References

References
1.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
2.
Manabe
,
S.
,
1960
, “
The Non-Integer Integral and Its Application to Control Systems
,”
J. Jpn. Inst. Electr. Eng.
,
80
(
860
), pp.
589
597
.
3.
Oustaloup
,
A.
,
Moreau
,
X.
, and
Nouillant
,
M.
,
1996
, “
The Crone Suspension
,”
Control Eng. Pract.
,
4
(
8
), pp.
1101
1108
.10.1016/0967-0661(96)00109-8
4.
Lurie
,
B. J.
,
1994
, “
Three-Parameter Tunable Tilt-Integral-Derivative (TID) Controller
,” U.S. Patent No. 5,371,670.
5.
Podlubny
,
I.
,
1999
, “
Fractional-Order Systems and PIλDμ-Controllers
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.10.1109/9.739144
6.
Valério
,
D.
, and
da Costa
,
J. S.
,
2006
, “
Tuning of Fractional PID Controllers With Ziegler–Nichols-Type Rules
,”
Signal Process.
,
86
(
10
), pp.
2771
2784
. Special Section: Fractional Calculus Applications in Signals and Systems.10.1016/j.sigpro.2006.02.020
7.
Monje
,
C. A.
,
Vinagre
,
B. M.
,
Feliu
,
V.
, and
Chen
,
Y.
,
2008
, “
Tuning and Auto-Tuning of Fractional Order Controllers for Industry Applications
,”
Control Eng. Pract.
,
16
(
7
), pp.
798
812
.10.1016/j.conengprac.2007.08.006
8.
Panagopoulos
,
H.
,
Åström
,
K.
, and
Hagglund
,
T.
,
2002
, “
Design of PID controllers Based on Constrained Optimisation
,”
IEE Proc.: Control Theory Appl.
,
149
(
1
), pp.
32
40
.10.1049/ip-cta:20020102
9.
Monje
,
C. A.
,
Calderon
,
A. J.
,
Vinagre
,
B. M.
,
Chen
,
Y.
, and
Feliu
,
V.
,
2004
, “
On Fractional PIλ Controllers: Some Tuning Rules for Robustness to Plant Uncertainties
,”
Nonlinear Dyn.
,
38
(
1
), pp.
369
381
.10.1007/s11071-004-3767-3
10.
Castillo
,
F. J.
,
Feliu
,
V.
,
Rivas
,
R.
, and
Sánchez
,
L.
,
2010
, “
Design of a Class of Fractional Controllers From Frequency Specifications With Guaranteed Time Domain Behavior
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1656
1666
.10.1016/j.camwa.2009.08.007
11.
Vinagre
,
B.
, and
Feliu
,
V.
,
2007
, “
Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method
,”
IEEE Trans. Autom. Control
,
52
(
12
), pp.
2385
2389
.10.1109/TAC.2007.910728
12.
Bouafoura
,
M. K.
, and
Braiek
,
N. B.
,
2010
, “
PIλDμ Controller Design for Integer and Fractional Plants Using Piecewise Orthogonal Functions
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
5
), pp.
1267
1278
.10.1016/j.cnsns.2009.05.047
13.
Tenreiro Machado
,
J. A.
,
2010
, “
Optimal Tuning of Fractional Controllers Using Genetic Algorithms
,”
Nonlinear Dyn.
,
62
(1–2)
, pp.
447
452
.10.1007/s11071-010-9731-5
14.
Biswas
,
A.
,
Das
,
S.
,
Abraham
,
A.
, and
Dasgupta
,
S.
,
2009
, “
Design of Fractional-Order PIλDμ Controllers With an Improved Differential Evolution
,”
Eng. Applic. Artif. Intell.
,
22
(
2
), pp.
343
350
.10.1016/j.engappai.2008.06.003
15.
Cao
,
J.-Y.
, and
Cao
,
B.-G.
,
2006
, “
Design of Fractional Order Controller Based on Particle Swarm Optimization
,”
Int. J. Control Autom. Syst.
,
4
(
6
), pp.
775
781
.10.1109/ICIEA.2006.257091
16.
Ogata
,
K.
,
2009
,
Modern Control Engineering
,
5th ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
17.
Doyle
,
J.
,
Glover
,
K.
,
Khargonekar
,
P.
, and
Francis
,
B.
,
1989
, “
State-Space Solutions to Standard H2 and H∞ Control Problems
,”
IEEE Trans. Autom. Control
,
34
(
8
), pp.
831
847
.10.1109/9.29425
18.
Horowitz
,
I.
,
1979
, “
Quantitative Synthesis of Uncertain Multiple Input-Output Feedback System
,”
Int. J. Control
,
30
(
1
), pp.
81
106
.10.1080/00207177908922759
19.
Rahimian
,
M. A.
, and
Tavazoei
,
M. S.
,
2010
, “
Stabilizing Fractional-Order PI and PD Controllers: An Integer-Order Implemented System Approach
,”
J. Syst. Control Eng.
,
224
(
8
), pp.
893
903
.10.1243/09596518JSCE1043
20.
Biswas
,
K.
,
Sen
,
S.
, and
Dutta
,
P.
,
2006
, “
Realization of a Constant Phase Element and Its Performance Study in a Differentiator Circuit
,”
IEEE Trans. Circuits Syst., II: Express Briefs
,
53
(
9
), pp.
802
806
.10.1109/TCSII.2006.879102
21.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2010
, “
Rational Approximations in the Simulation and Implementation of Fractional-Order Dynamics: A Descriptor System Approach
,”
Automatica
,
46
, pp.
94
100
.10.1016/j.automatica.2009.09.016
22.
Oustaloup
,
A.
,
Levron
,
F.
,
Mathieu
,
B.
, and
Nanot
,
F. M.
,
2000
, “
Frequency-Band Complex Noninteger Differentiator: Characterization and Synthesis
,”
IEEE Trans. Circuits Syst., I: Fundam. Theor. Appl.
,
47
(
1
), pp.
25
39
.10.1109/81.817385
23.
Matsuda
,
K.
, and
Fujii
,
H.
,
1993
, “
H∞-Optimized Wave-Absorbing Control: Analytical and Experimental Results
,”
J. Guid. Control Dyn.
,
16
(
6
), pp.
1146
1153
.10.2514/3.21139
24.
Charef
,
A.
,
2006
, “
Analogue Realisation of Fractional-Order Integrator, Differentiator and Fractional PIλDμ Controller
,”
IEE Proc.: Control Theory Appl.
,
153
(
6
), pp.
714
720
.10.1049/ip-cta:20050019
25.
Carlson
,
G.
, and
Halijak
,
C.
,
1964
, “
Approximation of Fractional Capacitors (1/s)(1/n) by a Regular Newton Process
,”
IEEE Trans. Circuit Theory
,
11
(
2
), pp.
210
213
.10.1109/TCT.1964.1082270
26.
Roy
,
S. D.
,
1967
, “
On the Realization of a Constant-Argument Immittance or Fractional Operator
,”
IEEE Trans. Circuit Theory
,
14
(
3
), pp.
264
274
.10.1109/TCT.1967.1082706
27.
Chen
,
Y.
,
Vinagre
,
B. M.
, and
Podlubny
,
I.
,
2004
, “
Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives an Expository Review
,”
Nonlinear Dyn.
,
38
(
1–2
), pp.
155
170
.10.1007/s11071-004-3752-x
28.
Petras
,
I.
,
Podlubny
,
I.
,
O'Leary
,
P.
,
Dorcak
,
L.
, and
Vinagre
,
B. M.
,
2002
, “
Analogue Realization of Fractional Order Controllers
,”
FBERG, Technical University of Kosice
,
Kosice
, Slovakia.
29.
Vinagre
,
B.
,
Podlubny
,
I.
,
Hernández
,
A.
, and
Feliu
,
V.
,
2000
, “
Some Approximations of Fractional Order Operators Used in Control Theory and Applications
,”
Fractional Calculus Appl. Anal.
,
3
(
3
), pp.
231
248
.
30.
Podlubny
,
I.
,
Petras
,
I.
,
Vinagre
,
B. M.
,
O'Leary
,
P.
, and
Dorcak
,
L.
,
2002
, “
Analogue Realizations of Fractional-Order Controllers
,”
Nonlinear Dyn.
,
29
(
1
), pp.
281
296
.10.1023/A:1016556604320
31.
Tavazoei
,
M. S.
,
Haeri
,
M.
,
Bolouki
,
S.
, and
Siami
,
M.
,
2008
, “
Stability Preservation Analysis for Frequency-Based Methods in Numerical Simulation of Fractional Order Systems
,”
SIAM J. Numer. Anal.
,
47
, pp.
321
338
.10.1137/080715949
32.
Charef
,
A.
,
Sun
,
H.
,
Tsao
,
Y.
, and
Onaral
,
B.
,
1992
, “
Fractal System as Represented by Singularity Function
,”
IEEE Trans. Autom. Control
,
37
(
9
), pp.
1465
1470
.10.1109/9.159595
33.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2007
, “
Unreliability of Frequency-Domain Approximation in Recognising Chaos in Fractional-Order Systems
,”
IET Signal Process.
,
1
(
4
), pp.
171
181
.10.1049/iet-spr:20070053
34.
Tavazoei
,
M. S.
,
2010
, “
Notes on Integral Performance Indices in Fractional-Order Control Systems
,”
J. Process Control
,
20
(
3
), pp.
285
291
.10.1016/j.jprocont.2009.09.005
35.
Alomoush
,
M. I.
,
2010
, “
Load Frequency Control and Automatic Generation Control Using Fractional-Order Controllers
,”
Electr. Eng.
,
91
(
7
), pp.
357
368
.10.1007/s00202-009-0145-7
36.
Agrawal
,
O. P.
,
2004
, “
A General Formulation and Solution Scheme for Fractional Optimal Control Problems
,”
Nonlinear Dyn.
,
38
(
1
), pp.
323
337
.10.1007/s11071-004-3764-6
37.
Agrawal
,
O. P.
,
2008
, “
A Quadratic Numerical Scheme for Fractional Optimal Control Problems
,”
ASME J. Dyn. Sys., Meas., Control
,
130
(
1
), p.
011010
.10.1115/1.2814055
38.
Agrawal
,
O. P.
,
2008
, “
Fractional Optimal Control of a Distributed System Using Eigenfunctions
,”
ASME J. Comput. Nonlinear Dynam.
,
3
(
2
), p.
021204
.10.1115/1.2833873
39.
Tricaud
,
C.
, and
Chen
,
Y.
,
2010
, “
An Approximate Method for Numerically Solving Fractional Order Optimal Control Problems of General Form
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1644
1655
.10.1016/j.camwa.2009.08.006
40.
Tricaud
,
C.
, and
Chen
,
Y.
,
2009
, “
Solution of Fractional Order Optimal Control Problems Using SVD-Based Rational Approximations
,”
Proceedings of the 2009 American Control Conference
(
ACC
’09),
IEEE Press
, pp.
1430
1435
.10.1109/ACC.2009.5160677
41.
Tricaud
,
C.
, and
Chen
,
Y.
,
2010
, “
Time-Optimal Control of Systems With Fractional Dynamics
,”
Int. J. Differ. Equations
,
2010
, p.
461048
.10.1155/2010/461048
42.
Toivonen
,
H.
, and
Totterman
,
S.
,
2006
, “
Design of Fixed-Structure Controllers With Frequency-Domain Criteria: A Multiobjective Optimisation Approach
,”
IEE Proc.: Control Theory Appl.
,
153
(
1
), pp.
46
52
.10.1049/ip-cta:20045103
43.
Åström
,
K. J.
, and
Hägglund
,
T.
,
2001
, “
The Future of PID Control
,”
Control Eng. Pract.
,
9
(
11
), pp.
1163
1175
.10.1016/S0967-0661(01)00062-4
44.
Ukpai
,
U. I.
, and
Jayasuriya
,
S.
,
2004
, “
Using Controller Reduction Techniques for Efficient PID Controller Synthesis
,”
ASME J. Dyn. Sys., Meas., Control
,
126
(
3
), pp.
692
696
.10.1115/1.1790541
45.
Åström
,
K. J.
,
Panagopoulos
,
H.
, and
Hägglund
,
T.
,
1998
, “
Design of PI Controllers Based on Non-Convex Optimization
,”
Automatica
,
34
(
5
), pp.
585
601
.10.1016/S0005-1098(98)00011-9
46.
Hwang
,
C.
, and
Hsiao
,
C.-Y.
,
2002
, “
Solution of a Non-Convex Optimization Arising in PI/PID Control Design
,”
Automatica
,
38
(
11
), pp.
1895
1904
.10.1016/S0005-1098(02)00115-2
47.
Raynaud
,
H. F.
, and
Zerganoh
,
A.
,
2000
, “
State-Space Representation for Fractional Order Controllers
,”
Automatica
,
36
(
7
), pp.
1017
1021
.10.1016/S0005-1098(00)00011-X
48.
Wang
,
F.-C.
, and
Chen
,
H.-T.
,
2009
, “
Design and Implementation of Fixed-Order Robust Controllers for a Proton Exchange Membrane Fuel Cell System
,”
Int. J. Hydrogen Energy
,
34
(
6
), pp.
2705
2717
.10.1016/j.ijhydene.2008.11.101
49.
Keel
,
L.
, and
Bhattacharyya
,
S.
,
1997
, “
Robust, Fragile, or Optimal?
,”
IEEE Trans. Autom. Control
,
42
(
8
), pp.
1098
1105
.10.1109/9.618239
50.
Makila
,
P.
,
Keel
,
L.
, and
Bhattacharyya
,
S.
,
1998
, “
Comments on ‘Robust, Fragile, or Optimal?’ [and Reply]
,”
IEEE Trans. Autom. Control
,
43
(
9
), pp.
1265
1268
.10.1109/9.718613
51.
Tavazoei
,
M. S.
,
Haeri
,
M.
,
Attari
,
M.
,
Bolouki
,
S.
, and
Siami
,
M.
,
2009
, “
More Details on Analysis of Fractional-Order Van der Pol Oscillator
,”
J. Vib. Control
,
15
(
6
), pp.
803
819
.10.1177/1077546308096101
You do not currently have access to this content.