It is well established that it is necessary to use a minimum of six accelerometers to determine the general motion of a rigid body. Using this minimum number of accelerometers generally requires that a nonlinear differential equation be solved for the angular velocity and that the estimate of angular velocity that is obtained from the solution of this equation be used in the calculation of the specific force at a point. This paper serves two main purposes. First it discusses, for the first time, the geometric conditions that must be satisfied by an arrangement of six accelerometers so that it is possible, in principle, to determine the motion of the body to which they are attached. Second, a special class of minimal accelerometer configurations that yields angular acceleration as a linear combination of accelerometer measurements is identified, and a design methodology for this special class is presented.

References

References
1.
Titterton
,
D.
, and
Weston
,
J.
,
1997
,
Strapdown Inertial Navigation Technology
,
Peter Peregrinus Ltd.
,
London, UK
.
2.
Chen
,
J.-H.
,
Lee
,
S.-C.
, and
DeBra
,
D.
,
1994
, “
Gyroscope Free Strapdown Inertial Measurement Unit by Six Linear Accelerometers
,”
J. Guid. Control Dyn.
,
17
(
2
), pp.
286
290
.10.2514/3.21195
3.
Kane
,
T.
,
Hayes
,
W.
, and
Priest
,
J.
,
1974
, “
Experimental Determination of Forces Exerted in Tennis Play
,”
Biomechanics IV
,
R. C.
Nelson
and
C. A.
Morehouse
, ed.,
University Park Press
,
Baltimore, MD
, pp.
284
290
.
4.
Hayes
,
W.
,
Gran
,
J.
,
Nagurka
,
M.
,
Feldman
,
J.
, and
Oatis
,
C.
,
1983
, “
Leg Motion Analysis During Gait by Multiaxial Accelerometry: Theoretical Foundations and Preliminary Validations
,”
ASME J. Biomech. Eng.
,
105
(
3
), pp.
283
289
.10.1115/1.3138419
5.
Zappa
,
B.
,
Legnani
,
G.
,
van den Bogert
,
A.
, and
Adamini
,
R.
,
2001
, “
On the Number and Placement of Accelerometers for Angular Velocity and Acceleration Determination
,”
ASME J. Dyn. Sys., Meas., Control
,
123
(
3
), pp.
552
554
.10.1115/1.1386649
6.
Genin
,
J.
,
Hong
,
J.
, and
Xu
,
W.
,
1997
, “
Accelerometer Placement for Angular Velocity Determination
,”
ASME J. Dyn. Sys., Meas., Control
,
119
(
3
), pp.
474
477
.10.1115/1.2801281
7.
Costello
,
M.
, and
Jitpraphai
,
T.
,
2002
, “
Determining Angular Velocity and Angular Acceleration of Projectiles Using Triaxial Acceleration Measurements
,”
J. Spacecr. Rockets
,
39
(
1
), pp.
73
80
.10.2514/2.3784
8.
Parsa
,
K.
,
Angeles
,
J.
, and
Misra
,
A.
,
2002
, “
Attitude Calibration of an Accelerometer Array
,” Proceedings of the 2002
IEEE
International Conference on Robotics and Automation
, May 11–15, pp.
129
134
.10.1109/ROBOT.2002.1013350
9.
Parsa
,
K.
,
Angeles
,
J.
, and
Misra
,
A.
,
2004
, “
Rigid-Body Pose and Twist Estimation Using an Accelerometer Array
,”
Arch. Appl. Mech.
,
74
, pp.
223
236
.10.1007/s00419-004-0345-6
10.
Schuler
,
A.
,
Grammatikos
,
A.
, and
Fegley
,
K.
,
1967
, “
Measuring Rotational Motion With Linear Accelerometers
,”
IEEE Trans. Aerosp. Electron. Syst.
,
3
(
3
), pp.
465
472
.10.1109/TAES.1967.5408811
11.
Morris
,
J.
,
1973
, “
Accelerometry—A Technique for the Measurement of Human Body Movements
,”
J. Biomechan.
,
6
, pp.
729
736
.10.1016/0021-9290(73)90029-8
12.
Padgaonkar
,
A.
,
Krieger
,
K.
, and
King
,
A.
,
1975
, “
Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers
,”
ASME J. Appl. Mech.
,
42
(
3
), pp.
552
556
.10.1115/1.3423640
13.
Liu
,
Y.
,
1976
, “
Discussion: Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers
,”
ASME J. Appl. Mech.
,
43
(
2
), pp.
377
378
.10.1115/1.3423861
14.
Giansanti
,
D.
,
Macellari
,
V.
,
Maccioni
,
G.
, and
Cappozzo
,
A.
,
2003
, “
Is it Feasible to Reconstruct Body Segment 3-D Position and Orientation Using Accelerometric Data?
,”
IEEE Trans. Biomed. Eng.
,
50
(
4
), pp.
476
483
.10.1109/TBME.2003.809490
15.
Tan
,
C.-W.
,
Park
,
S.
,
Mostov
,
K.
, and
Varaiya
,
P.
,
2001
, “
Design of Gyrosope-Free Navigation Systems
,” 2001
IEEE
Intelligent Systems Conference Proceedings
, pp.
286
291
.10.1109/ITSC.2001.948670
16.
Tan
,
C.-W.
, and
Park
,
S.
,
2005
, “
Design of Accelerometer-Based Inertial Navigation Systems
,”
IEEE Trans. Instrum. Meas.
,
54
(
6
), pp.
2520
2530
.10.1109/TIM.2005.858129
17.
Park
,
S.
,
Tan
,
C.-W.
, and
Park
,
J.
,
2005
, “
A Scheme for Improving the Performance of a Gyroscope-Free Inertial Measurement Unit
,”
Sens. Actuators, A
,
121
, pp.
410
420
.10.1016/j.sna.2005.03.060
18.
Ding
,
M.
,
Wang
,
Q.
,
Shen
,
G.
, and
Zhao
,
P.
,
2005
, “
A Novel Non-Gyro Inertial Measurement Unit
,”
Key Eng. Mater.
,
295–296
, pp.
583
588
.10.4028/www.scientific.net/KEM.295-296.583
19.
Ding
,
M.
,
Zhou
,
Q.
,
Wang
,
Q.
, and
Wang
,
C.
,
2006
, “
Feasibility Analysis of Accelerometer Configuration of Non-Gyro Micro Inertial Measurement Unit
,”
Power Electronics and Motion Control Conference (IPEMC'06)
, CES/
IEEE
, Vol.
3
.10.1109/IPEMC.2006.4778309
20.
Kane
,
T.
, and
Levinson
,
D.
,
1985
,
Dynamics, Theory and Applications
,
McGraw-Hill
,
New York
.
21.
McCarthy
,
J.
,
2000
,
Geometric Design of Linkages
,
Springer-Verlag
,
New York
.
22.
Pottmann
,
H.
, and
Wallner
,
J.
,
2001
,
Computational Line Geometry
,
Springer
,
Heidelberg, Germany
.
23.
Veblen
,
O.
, and
Young
,
J.
,
1938
,
Projective Geometry
, Vol.
1
,
Ginn and Company
,
Boston
.
24.
Phillips
,
J.
,
1990
,
Freedom in Machinery, Volume 2, Screw Theory Exemplified
,
Cambridge University Press
,
New York
.
25.
Dandurand
,
A.
,
1984
, “
The Rigidity of Compound Spatial Grids
,”
Struct. Topol.
,
10
, pp.
41
55
.
26.
Merlet
,
J.-P.
,
2000
,
Parallel Robots
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
You do not currently have access to this content.