The low-level modeling and control of mobile robots that interact forcibly with their environment, such as robotic excavation machinery, is a challenging problem that has not been adequately addressed in prior research. This paper investigates the low-level modeling of robotic bulldozing. The proposed model characterizes the three primary degrees-of-freedom (DOF) of the bulldozer, the blade position, the material accumulation on the blade, and the material distribution in the environment. It includes discrete operation modes contained within a hybrid dynamic model framework. The dynamics of the individual modes are represented by a set of linear and nonlinear differential equations. An instrumented scaled-down bulldozer and environment are developed to emulate the full scale operation. Model parameter estimation and validation are completed using experimental data from this system. The model is refined based on a global sensitivity analysis. The refined model is suitable for simulation and design of robotic bulldozing control strategies.

References

References
1.
Ito
,
N.
,
1991
, “
Bulldozer Blade Control
,”
J. Terramech.
,
28
(
1
), pp.
65
71
.10.1016/0022-4898(91)90007-S
2.
Terano
,
T.
,
Masui
,
S.
, and
Nagaya
,
K.
,
1992
, “
Experimental Study of Fuzzy Control for Bulldozer
,” Proceedings of the
IEEE
Region 10 Conference (TENCON '92),
Melbourne, Australia
,
Nov. 11–13
, pp.
644
647
.10.1109/TENCON.1992.271892
3.
Parker
,
C. A. C.
,
Zhang
,
H.
, and
Kube
,
C. R.
,
2003
, “
Blind Bulldozing: Multiple Robot Nest Construction
,” Proceedings of the
IEEE
/RSJ International Conference on Intelligent Robotics and Systems,
Las Vegas, NV
,
Oct.
27–31, pp.
2010
2015
.10.1109/IROS.2003.1248950
4.
Thangavelautham
,
J.
,
El Samid
,
N. A.
,
Grouchy
,
P.
,
Earon
,
E.
,
Fu
,
T.
,
Nagrani
,
N.
, and
D'Eleuterio
,
G. M. T.
,
2009
, “
Evolving Multirobot Excavation Controllers and Choice of Platforms Using an Artificial Neural Tissue Paradigm
,” Proceedings of the
IEEE
International Symposium on Computational Intelligence in Robotics and Automation (CIRA),
pp.
258
265
.10.1109/CIRA.2009.5423196
5.
Shi
,
X.
,
Lever
,
P. J. A.
, and
Wang
,
F.-Y.
,
1996
, “
Fuzzy Behavior Integration and Action Fusion for Robotic Excavation
,”
IEEE Trans. Ind. Electron. Control Instrum.
,
43
(
3
), pp.
395
402
.10.1109/41.499812
6.
Takahashi
,
H.
,
Hasegawa
,
M.
, and
Nakano
,
E.
,
1999
, “
Analysis on the Resistive Forces Acting on the Bucket of a Load-Haul-Dump Machine and a Wheel Loader in the Scooping Task
,”
Adv. Rob.
,
13
(
2
), pp.
97
114
.10.1163/156855399X01035
7.
Althoefer
,
K.
,
Tan
,
C. P.
,
Zweiri
,
Y. H.
, and
Seneviratne
,
L. D.
,
2009
, “
Hybrid Soil Parameter Measurement and Estimation Scheme for Excavation Automation
,”
IEEE Trans. Instrum. Meas.
,
58
(
10
), pp.
3633
3641
.10.1109/TIM.2009.2018699
8.
Bevly
,
D. M.
,
Gerdes
,
J. C.
, and
Parkinson
,
B. W.
,
2002
, “
A New Yaw Dynamic Model for Improved High Speed Control of a Farm Tractor
,”
ASME J. Dyn. Sys., Meas., Control
,
124
(
4
), pp.
659
667
.10.1115/1.1515329
9.
Gartley
,
E.
, and
Bevly
,
D. M.
,
2008
, “
Online Estimation of Implement Dynamics for Adaptive Steering Control of Farm Tractors
,”
IEEE/ASME Trans. Mechatron.
,
13
(
4
), pp.
429
440
.10.1109/TMECH.2008.2001692
10.
Le
,
A. T.
,
Rye
,
D. C.
, and
Durrant-Whyte
,
H. F.
,
1997
, “
Estimation of Track-Soil Interactions for Autonomous Tracked Vehicles
,” Proceedings of the
IEEE
International Conference on Robotics and Automation, Albuquerque, NM, Apr. 20–25, pp.
1388
1393
.10.1109/ROBOT.1997.614331
11.
Branicky
,
M. S.
,
Borkar
,
V. S.
, and
Mitter
,
S. K.
,
1998
, “
A Unified Framework for Hybrid Control: Model and Optimal Control Theory
,”
IEEE Trans. Autom. Control
,
43
(
1
), pp.
31
45
.10.1109/9.654885
12.
Perttunen
,
C. D.
,
Jones
,
D. R.
, and
Stuckman
,
B. E.
,
1993
, “
Lipschitzian Optimization Without the Lipschitz Constant
,”
J. Optim. Theory Appl.
,
79
(
1
), pp.
157
181
.10.1007/BF00941892
13.
Finkel
,
D. E.
,
2004
, “
Direct—A Global Optimization Algorithm
,” http://www4.ncsu.edu/~ctk/Finkel_Direct/
14.
Homma
,
T.
, and
Saltelli
,
A.
,
1996
, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliab. Eng. Syst. Saf.
,
52
(
1
), pp.
1
17
.10.1016/0951-8320(96)00002-6
15.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1
), pp.
271
280
.10.1016/S0378-4754(00)00270-6
16.
Rodriguez-Fernandez
,
M.
, and
Banga
,
J. R.
,
2010
, “
SensSB: A Software Toolbox for the Development and Sensitivity Analysis of Systems Biology Models
,”
Bioinformatics
,
26
(
13
), pp.
1675
1676
.10.1093/bioinformatics/btq242
You do not currently have access to this content.