This study proposes a new intelligent controller based on self-constructing wavelet neural network (SCWNN) to suppress the subsynchronous resonance (SSR) in power systems compensated by series capacitors. In power systems, the use of intelligent technique is inevitable, because of the uncertainties such as operating condition variations, different kinds of disturbances, etc. Accordingly, an intelligent control system that is an on-line trained SCWNN controller with adaptive learning rates is used to mitigate the SSR. The Lyapunov stability method is used to extract the adaptive learning rates. Hence, the convergence of the proposed controller can be guaranteed. At first, there is no wavelet in the structure of controller. They are automatically generated and begin to grow during the control process. In the whole design process, the identification of the controlled plant dynamic is not necessary according to the ability of the proposed controller. The effectiveness and robustness of the proposed controller are demonstrated by using the simulation results.

References

References
1.
Sauer
,
P. W.
, and
Pai
,
M. A.
,
1998
,
Power System Dynamic and Stability
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Russell
,
S. J.
, and
Norvig
,
P.
,
2009
,
Artificial Intelligence: A Modern Approach
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
3.
Yu
,
Y.-N.
,
1983
,
Electrical Power System Dynamics
,
Academic Press Inc.
,
New York
.
4.
Demello
,
F. P.
, and
Concordia
,
C.
,
1969
, “
Concepts of Synchronous Machine Stability as Affected by Excitation Control
,”
IEEE Trans. Power Apparatus Syst.
,
PAS-88
(
4
), pp.
316
329
.10.1109/TPAS.1969.292452
5.
Hingorani
,
N. G.
,
1969
, “
Flexible AC Transmission
,”
IEEE Spectrum
,
30
(
4
), pp.
40
45
.10.1109/6.206621
6.
Zhang
,
D.
,
Xie
,
X.
,
Liu
,
S.
, and
Zhang
,
S.
,
2009
, “
An Intelligently Optimized SEDC for Multimodal SSR Mitigation,”
Electr. Power Syst. Res.
,
79
(
7
), pp.
1018
1024
.10.1016/j.epsr.2008.12.015
7.
Thampatty
,
K. C. S.
,
Nandakumar
,
M. P.
,
Cheriyan
,
E. P.
,
2011
, “
Adaptive RTRL Based Neurocontroller for Damping Subsynchronous Oscillations Using TCSC
,”
Eng. Appl. Artif. Intell.
,
24
(
1
), pp.
60
76
.10.1016/j.engappai.2010.09.005
8.
Pahlavani
,
M. R. A.
, and
Mohammadpour
,
H. A.
,
2011
, “
Damping of Sub-Synchronous Resonance and Low-Frequency Power Oscillation in a Series-Compensated Transmission Line Using Gate-Controlled Series Capacitor,”
Electr. Power Syst. Res.
,
81
(
2
), pp.
308
317
.10.1016/j.epsr.2010.09.007
9.
Ganjefar
,
S.
, and
Farahani
,
M.
,
2012
,
“Damping of Subsynchronous Resonance Using Self-Tuning PID and Wavelet Neural Network,”
Int. J. Comput. Math. Electr. Electron. Eng. (
COMPEL
),
31
(4)
, pp.
1259
1276
.10.1108/03321641211227537
10.
Ghorbani
,
A.
, and
Pourmohammad
,
S.
,
2011
,
“A Novel Excitation Controller to Damp Subsynchronous Oscillations,”
Electr. Power Energy Syst.
,
33
(
3
), pp.
411
419
.10.1016/j.ijepes.2010.10.002
11.
Shamsollahi
,
P.
, and
Malik
,
O. P.
,
1997
,
“An Adaptive Power System Stabilizer Using On-Line Trained Neural Networks,”
IEEE Trans. Energy Convers.
,
12
(
4
), pp.
382
387
.10.1109/60.638951
12.
Liu
,
W.
,
Venayagamoorthy
,
G. K.
, and
Wunsch
,
D. C.
, II
,
2003
, “
Adaptive Neural Network Based Power System Stabilizer Design
,”
Proceedings of the International Joint Conference on Neural Networks
,
IEEE
, pp.
2970
2975
.10.1109/IJCNN.2003.1224043
13.
Kobayashi
,
T.
, and
Yokoyama
,
A.
,
1996
,
“An Adaptive Neuro-Control System of Synchronous Generator for Power System Stabilization,”
IEEE Trans. Energy Convers.
,
11
(
3
), pp.
621
630
.10.1109/60.537034
14.
Wai
,
R. J.
, and
Chang
,
J. M.
,
2002
,
“Intelligent Control of Induction Servo Motor Drive via Wavelet Neural Network,”
Electr. Power Syst. Res.
,
61
(
1
), pp.
67
76
.10.1016/S0378-7796(01)00190-0
15.
Oussar
,
Y.
,
Rivals
,
I.
,
Personnaz
,
L.
, and
Dreyfus
,
G.
,
1998
,
“Training Wavelet Networks for Nonlinear Dynamic Input–Output Modeling,”
Neurocomputing
,
20
(
1-3
), pp.
173
188
.10.1016/S0925-2312(98)00010-1
16.
Zhang
,
J.
,
Walter
,
G.
,
Miao
,
Y.
, and
Lee
,
W. N. W.
,
1995
, “
Wavelet Neural Networks for Function Learning
,”
IEEE Trans. Signal Process.
,
43
(
6
), pp.
1485
1497
.10.1109/78.388860
17.
Zhang
,
Q.
, and
Benveniste
,
A.
,
1992
,
“Wavelet Networks,”
IEEE Trans. Neural Netw.
,
3
(
6
), pp.
889
898
.10.1109/72.165591
18.
Oussar
,
Y.
, and
Dreyfus
,
G.
,
2000
,
“Initialization by Selection for Wavelet Network Training,”
Neurocomputing
,
34
(
1-4
), pp.
131
143
.10.1016/S0925-2312(00)00295-2
19.
Yoo
,
S. J.
,
Park
,
J. B.
, and
Choi
,
Y. H.
,
2007
,
“Indirect Adaptive Control of Nonlinear Dynamic Aystems Using Self Recurrent Wavelet Neural Networks via Adaptive Learning Rates,”
Inf. Sci.
,
177
(
15
), pp.
3074
3098
.10.1016/j.ins.2007.02.009
20.
Yoo
,
S. J.
,
Park
,
J. B.
, and
Choi
,
Y. H.
,
2005
,
“Stable Predictive Control of Chaotic Systems Using Self-Recurrent Wavelet Neural Network,”
Int. J. Control Autom. Syst
.,
3
(
1
), pp.
43
55
.
21.
Lin
,
C.-J.
,
2009
,
“Nonlinear Systems Control Using Self-Constructing Wavelet Networks,”
Appl. Soft Comput.
,
9
(
1
), pp.
71
79
.10.1016/j.asoc.2008.03.014
22.
Chen
,
Y.
,
Dong
,
W.
, and
Farrell
,
J. A.
,
2011
, “
Self-Organized Locally Linear Optimal Tracking Control for Unknown Nonlinear Systems
,” Proceedings of 50th
IEEE
Conference on Decision and Control and European Control Conference
,
Orlando, FL
, pp.
5401
5406
.10.1109/CDC.2011.6161389
23.
Lian
,
J.
,
Lee
,
Y.
,
Sudhoff
,
S. D.
, and
Zak
,
S. H.
,
2008
,
“Self-Organizing Radial Basis Function Network for Real-Time Approximation of Continuous-Time Dynamical Systems,”
IEEE Trans. Neural Netw.
,
19
(
3
), pp.
460
474
.10.1109/TNN.2007.909842
24.
Lian
,
J.
,
Lee
,
Y.
, and
Zak
,
S. H.
,
2008
,
“Variable Neural Direct Adaptive Robust Control of Uncertain Systems,”
IEEE Trans. Autom. Control
,
53
(
11
), pp.
2658
2664
.10.1109/TAC.2008.2007149
25.
Xu
,
J.-X.
, and
Tan
,
Y.
,
2007
,
“Nonlinear Adaptive Wavelet Control Using Constructive Wavelet Networks,”
IEEE Trans. Neural Netw.
,
18
(
1
), pp.
115
127
.10.1109/TNN.2006.886759
26.
IEEE Subsynchronous Resonance Working Group
,
1985
,
“Second Benchmark Model for Computer Simulation of Subsynchronous Resonance,”
IEEE Trans. Power Apparatus Syst.
,
PAS-104
(
5
), pp.
1057
1066
.10.1109/TPAS.1985.323456
You do not currently have access to this content.