High-pressure pneumatic control valves have been widely investigated during last decades. The published literature includes experimental and analytical studies on both constant value on–off valve and pressure reducing valve, but rarely on servo valve. In this paper, a novel voice coil motor (VCM) direct drive high-pressure pneumatic servo valve (HPPSV) is proposed. The mathematical model of the HPPSV including electromechanical and fluid subsystem is presented. Furthermore, the hybrid control scheme consisting of a proportional integral differential (PID) controller with velocity/acceleration feed-forward and a disturbance observer is proposed to improve the control performance of the HPPSV, taking into account the factors such as compressibility of high-pressure gas, high nonlinearity of gas flow force and friction force. The experimental results show that the spool position control system based on the proposed control scheme has strong robustness and disturbance rejection capability, and the control accuracy of the valve spool position can be enhanced greatly compared with the conventional PID controller. The study has general implications in the development of high-pressure pneumatic servo valves and high-pressure pneumatic precision control field.

References

References
1.
Richer
,
E.
, and
Hurmuzlu
,
Y.
,
2000
, “
A High Performance Pneumatic Force Actuator System: Part 1—Nonlinear Mathematical Model
,”
ASME J. Dyn. Sys., Meas., Control
,
122
(
3
), pp.
416
425
.10.1115/1.1286336
2.
Jia
,
G. Z.
,
Wang
,
X. Y.
, and
Wu
,
G. M.
,
2004
, “
Viewing on Applications and Developments of the Compressed Air Power
,”
China Mech. Eng.
,
15
(
13
), pp.
1190
1194
.
3.
Xu
,
Z. P.
,
Wang
,
X. Y.
, and
Cheng
,
J.
,
2006
, “
High Pressure Pneumatic Technology: Present, Future
,”
Proceedings of the 7th ICFCM International Conference on Frontiers of Design and Manufaturing
,
Guangzhou, China
, pp.
123
126
.
4.
Schoenung
,
S. M.
, and
Burns
,
C.
,
1996
, “
Utility Energy Storage Applications Studies
,”
IEEE Trans. Energy Convers.
,
11
(
3
), pp.
658
665
.10.1109/60.537039
5.
Yang
,
G.
,
Guo
,
H.
, and
Li
,
B. R.
,
2007
, “
Dynamic Simulation Investigation of a Novel High-Pressure Pneumatic Proportional Control Valve
,”
China Mech. Eng.
,
18
(
12
), pp.
1418
1420
, 1437.
6.
Araki
,
K.
, and
Chen
,
N.
,
1999
, “
Pressure Versus Characteristics of a Diaphragm Type Pneumatic Pressure Control Proportional Valve
,”
Proceedings of 4th JHPS International Symposium
,
Tokyo, Japan
, pp.
413
418
.
7.
Jia
,
G. Z.
,
Wang
,
X. Y.
,
Wu
,
G. M.
,
Tao
,
G. L.
, and
Chen
,
Y.
,
2005
, “
Research on Principle and Property of Classification Control Pressure Reduction by Expander in High Pressure Pneumatic System
,”
Chin. J. Mech. Eng.
,
41
(
10
), pp.
210
214
.
8.
Xu
,
Z. P.
, and
Wang
,
X. Y.
,
2011
, “
Development of a Novel High Pressure Electronic Pneumatic Pressure Reducing Valve
,”
ASME J. Dyn. Sys., Meas., Control
,
133
, p.
011011
.10.1115/1.4002715
9.
Herakovič
,
N.
,
2009
, “
Flow-Force Analysis in a Hydraulic Sliding-Spool Valve
,”
Strojarstvo
,
51
, pp.
555
564
.
10.
Wu
,
S.
,
Jiao
,
Z. X.
,
Yu
,
J. T.
, and
Burton
,
R.
,
2009
, “
Simulation and Analysis of a Voice Coil Motor Direct Drive Valve (VCM-DDV) Based on a Co-Simulation Environment by AMESim and Simlink
,”
Proceedings of the 7th International Conference on Fluid Power Transmission and Control
,
Hangzhou, China
, pp.
158
162
.
11.
Miyajima
,
T.
,
Sakaki
,
K.
,
Shibukawa
,
T.
,
Fujita
,
T.
,
Kawashima
,
K.
, and
Kagawa
,
T.
,
2004
, “
Development of Pneumatic High Precise Position Controllable Servo Valve
,” Proceedings of the
IEEE
International Conference on Control Applications,
Taipei, Taiwan, ROC
, pp.
1159
1164
.10.1109/CCA.2004.1387529
12.
Miyajima
,
T.
,
Fujita
,
T.
,
Sakaki
,
K.
,
Kawashima
,
K.
, and
Kagawa
,
T.
,
2007
, “
Development of a Digital Control System for High-Performance Pneumatic Servo Valve
,”
Precis. Eng.
,
31
, pp.
156
161
.10.1016/j.precisioneng.2006.05.003
13.
Ahn
,
K. K.
,
Truong
,
D. Q.
, and
Soo
,
Y. H.
,
2007
, “
Self Tuning Fuzzy PID Control for Hydraulic Load Simulator
,”
Int. Conference on Control, Automation and Systems
(
ICCAS
'07),
Seoul, Korea
, pp.
345
349
.10.1109/ICCAS.2007.4406935
14.
Chang
,
W. D.
,
Hwang
,
R. C.
, and
Hsieh
,
J. G.
,
2002
, “
A Self-Tuning PID Control for a Class of Nonlinear Systems Based on the Lyapunov Approach
,”
J. Process Control
,
12
, pp.
233
242
.10.1016/S0959-1524(01)00041-5
15.
Yan
,
M. T.
,
Huang
,
K. Y.
,
Shiu
,
Y. J.
, and
Chen
,
Y.
,
2007
, “
Disturbance Observer and Adaptive Controller Design for a Linear-Motor-Driven Table System
,”
Int. J. Adv. Manuf. Technol.
,
35
, pp.
408
415
.10.1007/s00170-007-1173-y
16.
Kim
,
S. K.
,
Shi
,
J.
,
Lee
,
Y. S.
,
Kim
,
S. H.
,
Parastar
,
A.
, and
Seok
,
J. K.
,
2011
, “
Disturbance Decoupling Control of Voice Coil Motors for Precise Automated Manufacturing Processes
,” 8th
IEEE
International Conference on Power Electronics and ECCE Asia,
Jeju
,
Korea
, pp.
2486
2491
.10.1109/ICPE.2011.5944726
17.
Liu
,
B. F.
, and
Gao
,
Y.
,
2011
, “
A Robust Control Strategy for a Direct Drive Valve Based on a Voice Coil Motor
,”
Math. Comput. Modell.
, pp.
1
9
(in press)10.1016/j.mcm.2011.10.032.
18.
Topçu
,
E. E.
,
Yüksel
,
İ.
, and
Kamış
,
Z.
,
2006
, “
Development of Electro-Pneumatic Fast Switching Valve and Investigation of its Characteristics
,”
Mechatronics
,
16
(
6
), pp.
365
378
.10.1016/j.mechatronics.2006.01.005
19.
Andersen
,
B. W.
,
1968
,
The Analysis and Design of Pneumatic Systems
,
John Wiley
,
New York
.
20.
Shim
,
H.
, and
Jo
,
N. H.
,
2009
, “
An Almost Necessary and Sufficient Condition for Robust Stability of Closed-Loop Systems With Disturbance Observer
,”
Automatica
,
45
, pp.
296
299
.10.1016/j.automatica.2008.10.009
21.
Eom
,
K. S.
,
Suh
,
I. H.
, and
Chung
,
W. K.
,
2001
, “
Disturbance Observer Based Path Tracking Control of Robot Manipulator Considering Torque Saturation
,”
Mechatronics
,
11
, pp.
325
343
.10.1016/S0957-4158(00)00021-0
22.
Kempf
,
C. J.
, and
Kobayashi
,
S.
,
1999
, “
Disturbance Observer and Feedforward Design for a High-Speed Direct-Drive Positiong Table
,”
IEEE Trans. Control Syst. Technol.
,
7
, pp.
513
526
.10.1109/87.784416
23.
Lee
,
H. S.
,
1994
, “
Robust Digital Tracking Controllers for High-Speed/High-Accuracy Positioning Systems
,”
Ph.D. dissertation
,
Mechanical Engineering Department, University of Califormia
,
Berkeley, CA
.
You do not currently have access to this content.