This brief paper presents a symbolic dynamics-based method for detection of incipient faults in gas turbine engines. The underlying algorithms for fault detection and classification are built upon the recently reported work on symbolic dynamic filtering. In particular, Markov model-based analysis of quasi-stationary steady-state time series is extended to analysis of transient time series during takeoff. The algorithms have been validated by simulation on the NASA Commercial Modular Aero Propulsion System Simulation (C-MAPSS) transient test-case generator.

References

1.
Lipowsky
,
H.
,
Staudacher
,
S.
,
Bauer
,
M.
, and
Schmidt
,
K.-J.
,
2010
, “
Application of Bayesian Forecasting to Change Detection and Prognosis of Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
031602
.10.1115/1.3159367
2.
Guruprakash
,
V.
, and
Ganguli
,
R.
,
2008
, “
Three-and Seven-Point Optimally Weighted Recursive Median Filters for Gas Turbine Diagnostics
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
222
(
3
), pp.
307
318
.10.1243/09544100JAERO311
3.
Li
,
Y. G.
,
2003
, “
A Gas Turbine Diagnostic Approach With Transient Measurements
,”
Proc. Inst. Mech. Eng., Part A
,
217
(
2
), pp.
169
177
.10.1243/09576500360611317
4.
Merrington
,
G.
,
Kwon
,
O.
,
Goodwin
,
G.
, and
Carlsson
,
B.
,
1991
, “
Fault Detection and Diagnosis in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
113
, pp.
276
282
.10.1115/1.2906559
5.
Wang
,
X.
,
McDowell
,
N.
,
Kruger
,
U.
,
McCullough
,
G.
, and
Irwin
,
G. W.
,
2008
, “
Semi-Physical Neural Network Model in Detecting Engine Transient Faults Using the Local Approach
,”
Proceedings of the 17th World Congress of the International Federation of Automatic Control
(
IFAC
'08), July 6–11. 10.3182/20080706-5-KR-1001.01201
6.
Surender
,
V. P.
, and
Ganguli
,
R.
,
2005
, “
Adaptive Myriad Filter for Improved Gas Turbine Condition Monitoring Using Transient Data
,”
ASME J. Eng. Gas Turbines Power
,
127
, pp.
329
339
.10.1115/1.1850491
7.
Menon
,
S.
,
Uluyol
,
O.
,
Kim
,
K.
, and
Nwadiogbu
,
E. O.
,
2003
, “
Incipient Fault Detection and Diagnosis in Turbine Engines Using Hidden Markov Models
,”
ASME
Turbo Expo, Paper No. GT2003-38589, pp.
493
500
.10.1115/GT2003-38589
8.
Ray
,
A.
,
2004
, “
Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection
,”
Signal Process.
,
84
(
7
), pp.
1115
1130
.10.1016/j.sigpro.2004.03.011
9.
Rao
,
C.
,
Ray
,
A.
,
Sarkar
,
S.
, and
Yasar
,
M.
,
2009
, “
Review and Comparative Evaluation of Symbolic Dynamic Filtering for Detection of Anomaly Patterns
,”
Signal, Image Video Process.
,
3
(
2
), pp.
101
114
.10.1007/s11760-008-0061-8
10.
Gupta
,
S.
,
Ray
,
A.
,
Sarkar
,
S.
, and
Yasar
,
M.
,
2008
, “
Fault Detection and Isolation in Aircraft Gas Turbine Engines. Part 1: Underlying Concept
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
222
(3)
, pp.
307
318
.10.1243/09544100JAERO311
11.
Sarkar
,
S.
,
Yasar
,
M.
,
Gupta
,
S.
,
Ray
,
A.
, and
Mukherjee
,
K.
,
2008
, “
Fault Detection and Isolation in Aircraft Gas Turbine Engines. Part 2: Validation on a Simulation Test Bed
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
222
(
3
), pp.
319
330
.10.1243/09544100JAERO312
12.
Sarkar
,
S.
,
Rao
,
C.
, and
Ray
,
A.
,
2009
, “
Statistical Estimation of Multiple Faults in Aircraft Gas Turbine Engines
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
223
(
4
), pp.
415
424
.10.1243/09544100JAERO481
13.
Sarkar
,
S.
,
Jin
,
X.
, and
Ray
,
A.
,
2011
, “
Data-Driven Fault Detection in Aircraft Engines With Noisy Sensor Measurements
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
081602
.10.1115/1.4002877
14.
Armstrong
,
J.
,
2009
, “
User’s Guide for the Transient Test Case Generator
,” NASA GRC Internal Report.
15.
Frederick
,
D. K.
,
DeCastro
,
J. A.
, and
Litt
,
J. S.
,
2007
, “
User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)
,” Report No. NASA/TM2007-215026.
16.
Rajagopalan
,
V.
, and
Ray
,
A.
,
2006
, “
Symbolic Time Series Analysis via Wavelet-Based Partitioning
,”
Signal Process.
,
86
(
11
), pp.
3309
3320
.10.1016/j.sigpro.2006.01.014
17.
Wen
,
Y.
, and
Ray
,
A.
,
2012
, “
Vector Space Formulation of Probabilistic Finite State Automata
,”
J. Comput. Syst. Sci.
,
78
, pp.
1127
1141
.10.1016/j.jcss.2012.02.001
18.
Adenis
,
P.
,
Wen
,
Y.
, and
Ray
,
A.
,
2012
, “
An Inner Product Space on Irreducible and Synchronizable Probabilistic Finite State Automata
,”
Math. Control, Signals, Syst.
,
23
(
1
), pp.
281
310
.10.1007/s00498-012-0075-1
19.
Ferguson
,
T.
,
1973
, “
Bayesian Analysis of Some Nonparametric Problems
,”
Ann. Stat.
,
1
(
2
), pp.
209
230
.10.1214/aos/1176342360
20.
Sethuraman
,
J.
,
1994
, “
A Constructive Definition of Dirichlet Priors
,”
Stat. Sin.
,
4
, pp.
639
650
.
21.
Wilks
,
S.
,
1963
,
Mathematical Statistics
,
John Wiley
,
New York
.
22.
Pathria
,
R.
,
1996
,
Statistical Mechanics
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK
.
23.
Kobayashi
,
T.
, and
Simon
,
D.
,
2005
, “
Hybrid Neural-Network Genetic-Algorithm Technique for Aircraft Engine Performance Diagnostics
,”
J. Propulsion Power
,
21
(
4
), pp.
751
758
.10.2514/1.9881
24.
Poor
,
V.
,
1988
,
An Introduction to Signal Detection and Estimation
, 2nd ed.,
Springer-Verlag
,
New York
.
25.
Sarkar
,
S.
,
Singh
,
D. S.
,
Srivastav
,
A.
, and
Ray
,
A.
,
2011
, “
Semantic Sensor Fusion for Fault Diagnosis in Aircraft Gas Turbine Engines
,”
Proceedings of American Control Conference
, San Francisco, CA.
You do not currently have access to this content.