This paper presents a novel reduced-order observer based controller for a class of Lipschitz nonlinear systems, described by a set of second order ordinary differential equations. The control law is designed based on the measured output and estimated states. The main features are: (1) The computation cost is reduced noticeably, since the observer is a reduced-order one; (2) The controller guarantees semi-global exponential stability for both estimation and tracking error; and (3) The proposed method can be used in a large range of applications, especially in mechanical systems. The effectiveness of the proposed method is investigated through the numerical simulation for a two-degrees-of-freedom robot manipulator acting on a horizontal worktable.

References

References
1.
Misawa
,
E. A.
, and
Hedrick
,
J. K.
,
1989
, “
Nonlinear Observers—A State-of-the-Art Survey
,”
ASME J. Dyn. Sys. Meas. Control
,
111
(
3
), pp.
344
352
.10.1115/1.3153059
2.
Marquez
,
H. J.
,
2003
,
Nonlinear Control Systems
,
John Wiley
, Hoboken, NJ, pp.
50
55
.
3.
Karafyllis
,
I.
, and
Zhong-Ping
,
J.
,
2011
,
Stability and Stabilization of Nonlinear Systems
,
Springer
,
New York
, pp.
321
322
.
4.
Krener
,
A. J.
, and
Isidori
,
A.
,
1983
, “
Linearization by Output Injection and Nonlinear Observers
,”
Syst. Control Lett.
,
3
(
1
), pp.
47
52
.10.1016/0167-6911(83)90037-3
5.
Rajamani
,
R.
,
1998
, “
Observers for Lipschitz Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
43
(
3
), pp.
397
401
.10.1109/9.661604
6.
Engel
,
R.
,
2007
, “
Nonlinear Observers for Lipschitz Continuous Systems With Inputs
,”
Int. J. Control
,
80
(
4
), pp.
495
508
.10.1080/00207170600849527
7.
Raghavan
,
S.
,
1992
, “
Observers and Compensators for Nonlinear Systems With Application to Flexible Joint Robots
,”
Ph.D. dissertation
,
University of California
,
Berkeley
.
8.
Dawson
,
D. M.
,
Qu
,
Z.
, and
Carroll
,
J. C.
,
1992
, “
On State Observation and Output Feedback Problems for Nonlinear Uncertain Dynamic Systems
,”
Syst. Control Lett.
,
18
(
3
), pp.
217
222
.10.1016/0167-6911(92)90008-G
9.
Robenack
,
K.
, and
Lynch
,
A. F.
,
2007
, “
High Gain Nonlinear Observer Design Using the Observer Canonical Form
,”
IEE Proc.: Control Theory Appl.
,
1
(
6
), pp.
1574
1579
.10.1049/iet-cta:20060418
10.
Zhu
,
F.
, and
Han
,
Z.
,
2002
, “
A Note on Observers for Lipschitz Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1751
1754
.10.1109/TAC.2002.803552
11.
Karagiannis
,
D.
,
Jiang
,
Z. P.
,
Ortega
,
R.
, and
Astolfi
,
A.
,
2005
, “
Output-Feedback Stabilization of a Class of Uncertain Non-Minimum-Phase Nonlinear Systems
,”
Automatica
,
41
(
9
), pp.
1609
1615
.10.1016/j.automatica.2005.04.013
12.
Homayounzade
,
M. R.
, and
Keshmiri
,
M.
,
2011
, “
Velocity Observer Based Controller Design for Second Order Systems, With Application to Constrained Robotic Systems
,”
IEEE
/
ASME International Conference on Advanced Intelligent Mechatronics
.10.1109/AIM.2011.6027046
13.
Homayounzade
,
M. R.
,
Keshmiri
,
M.
, and
Danesh
,
M.
,
2010
, “
An Observer-Based State Feedback Controller Design for Robot Manipulators Considering Actuators' Dynamic
,”
Conference on Methods and Models in Automation and Robotics
,
IEEE
.10.1109/MMAR.2010.5587227
14.
de Wit
,
C. C.
,
Fixot
,
N.
, and
Astrom
,
K.
,
1992
, “
Trajectory Tracking in Robot Manipulators via Nonlinear Estimated State Feedback
,”
IEEE Trans. Rob. Autom.
,
8
(
1
), pp.
138
144
.10.1109/70.127249
15.
Pagilla
,
P. R.
, and
Zhu
,
Y.
,
2004
, “
Controller and Observer Design for Lipschitz Nonlinear Systems
,”
Proceeding of American Control Conference
.
16.
Berghuis
,
H.
, and
Nijmeijer
,
H.
,
1993
, “
Global Regulation of Robots Using Only Position Meaurement
,”
Syst. Control Lett.
,
21
(
4
), pp.
289
293
.10.1016/0167-6911(93)90071-D
17.
Chen
,
C. T.
,
1999
,
Linear Systems Theory and Design
,
Oxford University Press
,
New York
, pp.
251
252
.
18.
Homayounzade
,
M. R.
, and
Keshmiri
,
M.
,
2011
, “
On the Robust Tracking Control of Kinematically Constrained Robot Manipulators
,”
IEEE
International Conference on Mechatronics
.10.1109/ICMECH.2011.5971290
You do not currently have access to this content.