Solutions already exist for the problem of canceling sinusoidal disturbances by measurement of state or an output for linear and nonlinear systems. In this paper, we design an adaptive controller to cancel matched sinusoidal disturbances forcing a linear time-invariant system by using only measurement of state-derivatives. Our design is based on three steps; (1) parametrization of the sinusoidal disturbance as the output of a known feedback system with an unknown output vector, (2) design of an adaptive disturbance observer and, (3) design of an adaptive controller. We prove that the equilibrium of the closed-loop adaptive system is globally uniformly asymptotically stable and locally exponentially stable. The effectiveness of the controller is illustrated with a simulation example of a second-order system.

References

References
1.
Ariyur
,
K. B.
, and
Krstic
,
M.
,
1999
, “
Feedback Attenuation and Adaptive Cancellation of Blade Vortex Interaction on a Helicopter Blade Element
,”
IEEE Trans. Control Syst. Technol.
,
7
, pp.
596
605
.10.1109/87.784423
2.
Bodson
,
M.
,
Jensen
,
J. S.
, and
Douglas
,
S. C.
,
2001
, “
Active Noise Control for Periodic Disturbances
,”
IEEE Trans. Control Syst. Technol.
,
9
, pp.
200
205
.10.1109/87.896760
3.
Gentili
,
L.
, and
Marconi
,
L.
,
2003
, “
Robust Nonlinear Disturbance Suppression of a Magnetic Leviation System
,”
Automatica
,
39
, pp.
735
742
.10.1016/S0005-1098(02)00307-2
4.
Johnson
,
C. D.
,
1971
, “
Accomodation of External Disturbances in Linear Regulator and Servomechanism Problems
,”
IEEE Trans. Autom. Control
,
16
, pp.
635
644
.10.1109/TAC.1971.1099830
5.
Francis
,
D. A.
, and
Wonham
,
W. N.
,
1975
, “
The Internal Model Principle for Linear Multivariable Regulators
,”
Appl. Math. Optim.
,
2
, pp.
170
194
.10.1007/BF01447855
6.
Serrani
,
A.
, and
Isidori
,
A.
,
2000
, “
Global Robust Output Regulation for a Class of Nonlinear Systems
,”
Syst. Control Lett.
,
39
, pp.
133
139
.10.1016/S0167-6911(99)00099-7
7.
Serrani
,
A.
,
Isidori
,
A.
, and
Marconi
,
L.
,
2001
, “
Semiglobal Nonlinear Output Regulation With Adaptive Internal Model
,”
IEEE Trans. Autom. Control
,
46
, pp.
227
236
.10.1109/9.940923
8.
Marconi
,
L.
,
Isidori
A.
, and
Serrani
,
A.
,
2004
, “
Non-Resonance Conditions for Uniform Observability in the Problem of Nonlinear Output Regulation
,”
Syst. Control Lett.
,
53
, pp.
281
298
.10.1016/j.sysconle.2004.05.006
9.
Marino
,
R.
, and
Tomei
,
P.
,
2000
, “
Robust Adaptive Regulation of Linear Time-Varying Systems
,”
IEEE Trans. Autom. Control
,
45
, pp.
1301
1311
.10.1109/9.867023
10.
Zhang
,
Z.
, and
Serrani
,
A.
,
2006
, “
The Linear Periodic Output Regulation Problem
,”
Syst. Control Lett.
,
55
, pp.
518
529
.10.1016/j.sysconle.2005.11.002
11.
Guo
,
X.
, and
Bodson
,
M.
,
2005
, “
Adaptive Cancellation of a Sinusoidal Disturbance With Rapidly Varying Frequency Using an Augmented Error Algorithm
,”
Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference
,
33
, pp.
4803
4808
.
12.
Serrani
,
A
.,
2004
, “
Hybrid External Models, and the Rejection of Harmonic Disturbances at the Controller Input
,”
Proceedings of the 43rd IEEE Conference on Decision and Control
, pp. 668–673.
13.
Marino
,
R.
,
Santosuosso
,
G. L.
, and
Tomei
,
P.
,
2003
, “
Robust Adaptive Compensation of Biased Sinusoidal Disturbances With Unknown Frequency
,”
Automatica
,
39
, pp.
1755
1761
.10.1016/S0005-1098(03)00170-5
14.
Marino
,
R.
, and
Tomei
,
P.
,
2003
, “
Output Regulation for Linear Systems via Adaptive Internal Model
,”
IEEE Trans. Autom. Control
,
48
, pp.
2199
2202
.10.1109/TAC.2003.820143
15.
Pigg
,
S.
, and
Bodson
,
M.
,
2010
, “
Adaptive Algorithms for the Rejection of Sinusoidal Disturbances Acting on Unknown Plants
,”
IEEE Trans. Control Syst. Technol.
,
18
, pp.
822
836
.10.1109/TCST.2009.2029237
16.
Bodson
,
M.
, and
Douglas
,
S.
,
1997
, “
Adaptive Algorithms for the Rejection of Sinusoidal Disturbances With Unknown Frequency
,”
Automatica
,
33
, pp.
2213
2221
.10.1016/S0005-1098(97)00149-0
17.
Pyrkin
,
A. A.
,
Smyshlyaev
,
A.
,
Bekiaris-Liberis
,
N.
, and
Krstic
,
M.
,
2010
, “
Rejection of Sinusoidal Disturbance of Unknown Frequency for Linear System With Input Delay
,”
Proceedings of the American Control Conference
, pp. 1617–1653.
18.
Bobtsov
,
A. A.
, and
Pyrkin
,
A. A.
,
2009
, “
Compensation of Unknown Sinusoidal Disturbances in Linear Plants of Arbitrary Relative Degree
,”
Autom. Remote Control
,
70
, pp.
449
456
.10.1134/S0005117909030102
19.
Guo
,
X.
, and
Bodson
,
M.
,
2009
, “
Analysis and Implementation of an Adaptive Algorithm for the Rejection of Multiple Sinusoidal Disturbances
,”
IEEE Trans. Control Syst. Technol.
,
17
, pp.
40
50
.10.1109/TCST.2008.922566
20.
Marino
,
R.
, and
Tomei
,
P.
,
2005
, “
Adaptive Tracking and Disturbance Rejection for Uncertain Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
50
, pp.
90
95
.10.1109/TAC.2004.841132
21.
Marino
,
R.
, and
Santosuosso
,
G. L.
,
2005
, “
Global Compensationof Unknown Sinusoidal Disturbances for a Class of Nonlinear Nonminimum Phase Systems
,”
IEEE Trans. Autom. Control
,
50
, pp.
1816
1822
.10.1109/TAC.2005.858647
22.
Nikiforov
,
V. O.
,
2001
, “
Nonlinear Servocompensation of Unknown External Disturbances
,”
Automatica
,
37
, pp.
1617
1653
.
23.
Ding
,
Z
.,
2003
, “
Universal Disturbance Rejection for Nonlinear Systems in Output Feedback Form
,”
IEEE Trans. Autom. Control
,
48
, pp.
1222
1227
.10.1109/TAC.2003.814265
24.
Abdelaziz
,
T. H. S.
, and
Valásek
M.
,
2004
, “
Pole-Placement for SISO Linear Systems by State-Derivative Feedback
,”
IEEE Proc. Control Theory Appl.
,
151
, pp.
377
385
.10.1049/ip-cta:20040660
25.
Abdelaziz
,
T. H. S.
, and
Valásek
M.
,
2005
, “
Direct Algorithm for Pole-Placement by State-Derivative Feedback for Multi-Input Linear Systems—Nonsingular Case
,”
Kybernetika
,
41
, pp.
637
660
.
26.
Abdelaziz
,
T. H. S.
,
2008
, “
Robust Pole Assignment for Linear Time-Invariant Systems Using State-Derivative Feedback
,”
J. Syst. Control Eng.
,
223
, pp.
187
199
.
27.
Michiels
,
W.
,
Vyhlídal
,
T.
,
Huijberts
,
H.
, and
Nijmeijer
,
H.
,
2009
, “
Stabilizability and Stability Robustness of State Derivative Feedback Controllers
,”
SIAM J. Control Optim.
,
47
, pp.
3100
3117
.10.1137/070697136
28.
Kwak
,
S. K.
,
Washington
,
G.
, and
Yedavalli
,
R. K.
,
2002
, “
Acceleration-Based Vibration Control of Distributed Paramter Systems Using the ‘Reciprocal State-Space Framework’
,”
J. Sound Vib.
,
251
, pp.
543
557
.10.1006/jsvi.2001.3842
29.
Assunção
,
E.
,
Teixeira
,
M. C. M.
,
Faria
,
F. A.
,
da Silva
,
N. A. P.
, and
Cardim
,
R.
,
2007
, “
Robust State-Derivative Feedback LMI-Based Designs for Multivariable Linear Systems
,”
Int. J. Control
,
80
, pp.
1260
1270
.10.1080/00207170701283899
30.
Nikiforov
,
V. O.
,
2004
, “
Observers of External Deterministic Disturbances. I. Objects With Known Parameters
,”
Autom. Remote Control
,
65
, pp.
1531
1541
.10.1023/B:AURC.0000044264.74470.48
31.
de Souza
,
E.
, and
Bhattacharyya
S. P.
,
1981
, “
Controllability, Observability and the Solution of AX - XB = C
,”
Linear Algebra Appl.
,
39
, pp.
167
188
.10.1016/0024-3795(81)90301-3
32.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P.
,
1995
,
Nonlinear and Adaptive Control Design
,
Wiley
,
New York
.
33.
Narendra
,
K. S.
, and
Annaswamy
,
A. M.
,
1989
,
Stable Adaptive Systems
,
Prentice–Hall
,
Englewood Cliffs, NJ
.
34.
Ioannou
,
P.
, and
Sun
,
J.
,
1996
,
Robust Adaptive Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.