The cost of electrical power produced by small wind turbines impedes the use of this technology, which can otherwise provide power to millions of homes in rural regions worldwide. To encourage their use, small wind turbines must capture wind energy more effectively while avoiding increased equipment costs. A variable ratio gearbox (VRG) can provide this capability to the simple fixed-speed wind turbine through discrete operating speeds. This is the second of a two-part publication that focuses on the control of a VRG-enabled wind turbine. The first part presented a 100 kW fixed speed, wind turbine model, and a method for manipulating the VRG and mechanical brake to achieve full load operation. In this study, an optimal control algorithm is developed to maximize the power production in light of the limited brake pad life. Recorded wind data are used to develop a customized control design that is specific to a given site. Three decision-making modules interact with the wind turbine model developed in Part 1 to create possible VRG gear ratio (GR) combinations. Dynamic programming is applied to select the optimal combination and establish the operating protocol. The technique is performed on 20 different wind profiles. The results suggest an increase in wind energy production of nearly 10%.

References

References
1.
Rex
,
A.
, and
Johnson
,
K.
,
2008
,
Model Development of a Wind Turbine System With a Continuously Variable Transmission for Design of Region 2 Speed Control
,
Reno, NV
.
2.
Johnson
,
K. E.
,
2004
, “
Adaptive Torque Control of Variable Speed Wind Turbines
,”
National Renewable Energy Laboratory
,
Golden, CO
,
Technical Report No. NREL/TP-500-36265
.
3.
Johnson
,
K. E.
,
Pao
,
L. Y.
,
Balas
,
M. J.
, and
Fingersh
,
L. J.
,
2006
, “
Control of Variable-Speed Wind Turbines: Standard and Adaptive Techniques for Maximizing Energy Capture
,”
IEEE Control Syst. Mag.
,
26
(
3
),
pp.
70
81
.10.1109/MCS.2006.1636311
4.
Koutroulis
,
E.
, and
Kalaitzakis
,
K.
,
2006
, “
Design of a Maximum Power Tracking System for Wind-Energy-Conversion Applications
,”
IEEE Trans. Ind. Electron.
,
53
(
2
),
pp.
486
494
.10.1109/TIE.2006.870658
5.
Nadhir
,
A.
, and
Hiyama
,
T.
,
2010
, “
Maximum Power Point Tracking Based Optimal Control Wind Energy Conversion System
,”
2010 Second International Conference on Advances in Computing, Control and Telecommunication Technologies (ACT)
,
pp.
41
44
.
6.
Thongam
,
J. S.
,
Bouchard
,
P.
,
Ezzaidi
,
H.
, and
Ouhrouche
,
M.
,
2009
, “
Wind Speed Sensorless Maximum Power Point Tracking Control of Variable Speed Wind Energy Conversion Systems
,”
IEEE International Electric Machines and Drives Conference, IEMDC′09
,
pp.
1832
1837
.
7.
Valenciaga
,
F.
, and
Puleston
,
P. F.
,
2007
, “
Variable Structure Control of a Wind Energy Conversion System Based on a Brushless Doubly Fed Reluctance Generator
,”
IEEE Trans. Energy Conversion
,
22
(
2
),
pp.
499
506
.10.1109/TEC.2006.875447
8.
Song
,
L.
,
Xing
,
S.
,
Peng
,
X.
, and
Wen
,
W.
,
2010
, “
Variable Structure Fuzzy-PI Control for Strategy of Maximal Wind Energy Capture and Conversion of Doubly Fed Induction Generators
,”
2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)
,
pp.
26
29
.
9.
Evangelista
,
C.
,
Puleston
,
P.
, and
Valenciaga
,
F.
,
2010
, “
A Simple Robust Controller for Power Maximization of a Variable-Speed Wind Turbine
,”
Int. J. Energy Res.
,
34
(
10
),
pp.
924
932
.10.1002/er.1613
10.
Bratcu
,
A. I.
,
Munteanu
,
I.
, and
Ceanga
,
E.
,
2008
, “
Optimal Control of Wind Energy Conversion Systems: From Energy Optimization to Multi-Purpose Criteria—A Short Survey
,”
2008 16th Mediterranean Conference on Control and Automation
,
pp.
759
766
.
11.
Lin
,
C.-C.
,
Kim
,
M.-J.
,
Peng
,
H.
, and
Grizzle
,
J. W.
,
2006
, “
System-Level Model and Stochastic Optimal Control for a PEM Fuel Cell Hybrid Vehicle
,”
ASME J. Dyn. Syst., Meas., Control
,
128
(
4
),
pp.
878
890
.10.1115/1.2362785
12.
Koot
,
M.
,
Kessels
,
J. T. B. A.
,
de Jager
,
B.
,
Heemels
,
W. P. M. H.
,
van den Bosch
,
P. P. J.
, and
Steinbuch
,
M.
,
2005
, “
Energy Management Strategies for Vehicular Electric Power Systems
,”
IEEE Trans. Veh. Technol.
,
54
(
3
),
pp.
771
782
.10.1109/TVT.2005.847211
13.
Lin
,
C.-C.
,
Peng
,
H.
,
Grizzle
,
J. W.
, and
Kang
,
J.-M.
,
2003
, “
Power Management Strategy for a Parallel Hybrid Electric Truck
,”
IEEE Trans. Control Syst. Technol.
,
11
(
6
),
pp.
839
849
.10.1109/TCST.2003.815606
14.
Brahma
,
A.
,
Guezennec
,
Y.
, and
Rizzoni
,
G.
,
2000
, “
Optimal Energy Management in Series Hybrid Electric Vehicles
,”
Proceedings of the 2000 American Control Conference
,
Vol.
1
,
pp.
60
64
.
15.
Chou
,
L.-S.
, and
Song
,
S.-M.
,
1992
, “
Geometric Work of Manipulators and Path Planning Based on Minimum Energy Consumption
,”
ASME J. Mech. Des.
,
114
(
3
),
pp.
414
421
.10.1115/1.2926567
16.
Zameroski
,
D.
,
Starr
,
G.
,
Wood
,
J.
, and
Lumia
,
R.
,
2008
, “
Rapid Swing-Free Transport of Nonlinear Payloads Using Dynamic Programming
,”
ASME J. Dyn. Syst., Meas., Control
,
130
(
4
), p.
041001
.10.1115/1.2936384
17.
Vukobratovic
,
M.
, and
Kircanski
,
M.
,
1982
, “
A Method for Optimal Synthesis of Manipulation Robot Trajectories
,”
ASME J. Dyn. Syst., Meas., Control
,
104
(
2
),
pp.
188
193
.10.1115/1.3139695
18.
Lee
,
C. W.
,
2009
, “
Dynamic Optimization of the Grinding Process in Batch Production
,”
ASME J. Manufac. Sci. Eng.
,
131
(
2
), p.
021006
.10.1115/1.3090880
19.
Hippalgaonkar
,
R. R.
, and
Shin
,
Y. C.
,
2010
, “
Robust Optimisation of Machining Conditions With Tool Life and Surface Roughness Uncertainties
,”
Int. J. Prod. Res.
,
49
(
13
),
pp.
3963
3978
.10.1080/00207543.2010.495207
20.
Dong
,
S.
,
Danai
,
K.
, and
Malkin
,
S.
,
2004
, “
Continuous Optimal Infeed Control for Cylindrical Plunge Grinding, Part 2: Controller Design and Implementation
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
),
pp.
334
340
.10.1115/1.1751424
21.
2011
, “
NREL: Wind Integration Datasets—Obtaining the Western Wind Dataset
,”
National Renewable Energy Laboratory
, accessed May 10, 2011, http://www.nrel.gov/wind/integrationdatasets/western/data.html
22.
2011
, “
Wind Energy Resource Atlas of the United States
,”
National Renewable Energy Laboratory
,
accessed May 10, 2011
, http://rredc.nrel.gov/wind/pubs/atlas/tables/1-1T.html
23.
Orthwein
,
W.
,
2004
,
Clutches and Brakes Design and Selection
,
Marcel Dekker
,
New York
.
24.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
),
pp.
981
988
.10.1063/1.1721448
25.
Limpert
,
R.
,
1999
,
Brake Design and Safety, Society of Automotive Engineers
,
Warrendale, PA
.
26.
Hall
,
J. F.
,
Mecklenborg
,
C. A.
,
Chen
,
D.
, and
Pratap
,
S. B.
,
2011
, “
Wind Energy Conversion With a Variable-Ratio Gearbox: Design and Analysis
,”
Renewable Energy
,
36
(
3
),
pp.
1075
1080
.10.1016/j.renene.2010.08.037
27.
Manwell
,
J.
,
2009
,
Wind Energy Explained: Theory, Design and Application
,
Wiley
,
Chichester, UK
,
Chap. 2
.10.1002/9781119994367
28.
Justus
,
C.
,
1978
,
Winds and Wind System Performance
,
Franklin Institute Press
,
Philadelphia
.
29.
The U.S. Department of Energy
,
2009
,
Annual Energy Review
2008
,
United States Department of Energy, Energy Information Administration
.
You do not currently have access to this content.