This paper proposes a longitudinal motion based payload parameter estimator (PPE) design for four-wheel-independently driven lightweight vehicles (LWVs), whose dynamics and control are substantially affected by their payload variations due to the LWVs' significantly reduced sizes and weights. Accurate and real-time estimation of payload parameters, including payload mass and its onboard planar location, will be helpful for LWV control (particularly under challenging driving conditions) and load monitoring. The proposed estimation method consists of three steps in sequential: tire effective radius identification for undriven wheels at constant speed driving; payload mass estimation during acceleration–deceleration period; and payload planar location estimation (PPLE). The PPLE is divided into two parts: a tire nominal normal force estimator (NNFE) based on a recursive least squares algorithm using signals generated by the redundant inputs, and a parameter calculator combining these estimated nominal normal forces. The prototype LWV is a lightweight electric ground vehicle (EGV) with separable torque control of the four wheels enabled by four in-wheel motors, which allow redundant input injections in the designed maneuvers. Experimental results obtained on an EGV road test show that the proposed PPE is capable of accurately estimating payload parameters, and it is independent of other unknown parameters such as tire-road friction coefficient.

References

References
1.
Materials Technologies: Goals, Strategies, and Top Accomplishments
,” available at http://www1.eere.energy.gov/vehiclesandfuels/pdfs/materials_tech_goals.pdf
2.
Huang
,
X.
, and
Wang
,
J.
,
2011
, “
Lightweight Vehicle Control-Oriented Modeling and Payload Parameter Sensitivity Analysis
,”
IEEE Trans. Veh. Technol.
,
60
(
5
), pp.
1999
2011
.10.1109/TVT.2011.2148135
3.
Marimuthu
,
R. P.
,
Jang
,
B. C.
, and
Hong
,
S. J.
,
2006
, “
A Study on SUV Parameters Sensitivity on Rollover Propensity
,”
SAE
Paper No. 2006-01-0795
10.4271/2006-01-0795.
4.
Merzouki
,
R.
,
Bouteldja
,
M.
,
Imine
,
H.
, and
Cadiou
,
J. C.
,
2004
, “
Friction Force Estimation and Adaptive Control for Tire-Road Contact
,” 2004
IEEE
/RSJ International Conference on Intelligent Robots and Systems
10.1109/IROS.2004.1389773.
5.
Chen
,
Y.
, and
Wang
,
J.
,
2011
, “
Adaptive Vehicle Speed Control With Input Injections for Longitudinal Motion Independent Road Frictional Condition Estimation
,”
IEEE Trans. Veh. Technol.
,
60
(
3
), pp.
839
848
.10.1109/TVT.2011.2106811
6.
Wang
,
J.
, and
Hsieh
,
M. F.
,
2009
, “
Vehicle Yaw-Inertia- and Mass-Independent Adaptive Steering Control
,”
Proc. Inst. Mech. Eng., Part D (J. Autom. Eng.)
,
223
(
9
), pp.
1101
1108
.10.1243/09544070JAUTO1135
7.
Kahveci
,
N. E.
,
2008
, “
Adaptive Steering Control for Uncertain Vehicle Dynamics With Crosswind Effects and Steering Angle Constraints
,” 2008
IEEE
International Conference on Vehicular Electronics and Safety
10.1109/ICVES.2008.4640911.
8.
Du
,
H.
,
Zhang
,
N.
, and
Dong
,
G.
,
2010
, “
Stabilizing Vehicle Lateral Dynamics With Considerations of Parameter Uncertainties and Control Saturation Through Robust Yaw Control
,”
IEEE Trans. Veh. Technol.
,
59
(
5
), pp.
2593
2597
.10.1109/TVT.2010.2043860
9.
Ahmadi
,
J.
,
Sedigh
,
A. K.
, and
Kabganian
,
M.
,
2009
, “
Adaptive Vehicle Lateral-Plane Motion Control Using Optimal Tire Friction Forces With Saturation Limits Consideration
,”
IEEE Trans. Veh. Technol.
,
58
(
8
), pp.
4098
4107
.10.1109/TVT.2009.2023660
10.
Wang
,
R.
, and
Wang
,
J.
,
2012
, “
Fault-Tolerant Control for Electric Ground Vehicles With Independently-Actuated In-Wheel Motors
,”
ASME J. Dyn. Sys., Meas., Control
,
134
(
2
), p.
021014
.10.1115/1.4005050
11.
Wang
,
R.
, and
Wang
,
J.
,
2011
, “
Fault-Tolerant Control With Active Fault Diagnosis for Four-Wheel Independently-Driven Electric Ground Vehicles
,”
IEEE Trans. Veh. Technol.
,
60
(
9
), pp.
4276
4287
.10.1109/TVT.2011.2172822
12.
Jung-Shan
,
L.
, and
Kanellakopoulos
,
I.
,
1998
, “
Nonlinearities Enhance Parameter Convergence in Output-Feedback Systems
,”
IEEE Trans. Autom. Control
,
43
(
1
), pp.
204
222
.10.1109/9.661068
13.
Wang
,
J.
, and
Longoria
,
R. G.
,
2009
, “
Coordinated and Reconfigurable Vehicle Dynamics Control
,”
IEEE Trans. Control Syst. Technol.
,
17
(
3
), pp.
723
732
.10.1109/TCST.2008.2002264
14.
Tjonnas
,
J.
, and
Johansen
,
T. A.
,
2010
, “
Stabilization of Automotive Vehicles Using Active Steering and Adaptive Brake Control Allocation
,”
IEEE Trans. Control Syst. Technol.
,
18
(
3
), pp.
545
558
.10.1109/TCST.2009.2023981
15.
Wesemeier
,
D.
, and
Isermann
,
R.
,
2009
, “
Identification of Vehicle Parameters Using Stationary Driving Maneuvers
,”
Control Eng. Pract.
,
17
(
12
), pp.
1426
1431
.10.1016/j.conengprac.2008.10.008
16.
Pence
,
B. L.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
,
2009
, “
Sprung Mass Estimation for Off-Road Vehicles via Base-Excitation Suspension Dynamics and Recursive Least Squares
,”
Proceedings of 2009 American Control Conference
(
ACC
'09)
.
10.1109/ACC.2009.5160126
17.
Han
,
K.-J.
,
Kim
,
I.-K.
,
Jo
,
H. Y.
, and
Huh
,
K.-S.
,
2009
, “
Development and Experimental Evaluation of an Online Estimation System for Vehicle Mass
,”
Proc. Inst. Mech. Eng., Part D (J. Autom. Eng.)
,
223
(
2
), pp.
167
177
.10.1243/09544070JAUTO991
18.
Huang
,
J.
, and
Lin
,
W. C.
,
2008
, “
EKF-Based In-Vehicle Estimation of Relative CG Height
,” Proceedings of 2008
ASME
Dynamic Systems and Control Conference
.10.1115/DSCC2008-2113
19.
Fathy
,
H. K.
,
Kang
,
D.
, and
Stein
,
J. L.
,
2008
, “
Online Vehicle Mass Estimation Using Recursive Least Squares and Supervisory Data Extraction
,”
Proceedings of 2008 American Control Conference
(
ACC
).10.1109/ACC.2008.4586760
20.
Huh
,
K.
,
Lim
,
S.
,
Jung
,
J.
,
Hong
,
D.
,
Han
,
S.
,
Han
,
K.
,
Jo
,
H. Y.
, and
Yun
,
J. M.
,
2007
, “
Vehicle Mass Estimator for Adaptive Roll Stability Control
,”
SAE
Paper No. 2007-01-0820.10.4271/2007-01-0820
21.
Wenzel
,
T. A.
,
Burnham
,
K. J.
,
Blundell
,
M. V.
, and
Williams
,
R. A.
,
2006
, “
Dual Extended Kalman Filter for Vehicle State and Parameter Estimation
,”
Veh. Syst. Dyn.
,
44
(
2
), pp.
153
171
.10.1080/00423110500385949
22.
Kober
,
W.
, and
Hirschberg
,
W.
,
2006
, “
On-Board Payload Identification for Commercial Vehicles
,” 2006
IEEE
International Conference on Mechatronics
10.1109/ICMECH.2006.252512.
23.
Hayakawa
,
K.
,
Hibino
,
R.
,
Osawa
,
M.
,
Sonoda
,
S.
,
Murahashi
,
T.
,
Yamada
,
N.
, and
Kato
,
H.
,
2006
, “
On-Board Estimation of Vehicle Weight By Optimizing Signal Processing
,”
SAE
Paper No. 2006-01-1489.10.4271/2006-01-1489
24.
Winstead
,
V.
, and
Kolmanovsky
,
I. V.
,
2005
, “
Estimation of Road Grade and Vehicle Mass via Model Predictive Control
,” Proceedings of the 2005
IEEE
International Conference on Control Applications
.10.1109/CCA.2005.1507359
25.
Vahidi
,
A.
,
Stefanopoulou
,
A.
, and
Peng
,
H.
,
2005
, “
Recursive Least Squares With Forgetting for Online Estimation of Vehicle Mass and Road Grade: Theory and Experiments
,”
Veh. Syst. Dyn.
,
43
(
1
), pp.
31
55
.10.1080/00423110412331290446
26.
Kiencke
,
U.
, and
Nielsen
,
L.
,
2005
,
Automotive Control Systems: For Engine, Driveline, and Vehicle
,
Springer
,
New York.
27.
Massel
,
T.
,
Ding
,
E. L.
, and
Arndt
,
M.
,
2004
, “
Estimation of Vehicle Loading State
,” Proceedings of the 2004
IEEE
International Conference on Control Applications
.10.1109/CCA.2004.1387546
28.
Bae
,
H. S.
,
Ryu
,
J.
, and
Gerdes
,
J. C.
,
2001
, “
Road Grade and Vehicle Parameter Estimation for Longitudinal Control Using GPS
,”
Proceedings of the 2001 IEEE Intelligent Transportation Systems Conference
.
29.
Kim
,
C.
, and
Ro
,
P. I.
,
2000
, “
Reduced-Order Modelling and Parameter Estimation for a Quarter-Car Suspension System
,”
Proc. Inst. Mech. Eng., Part D (J. Autom. Eng.)
,
214
(
8
), pp.
851
864
.10.1177/095440700021400804
30.
Solmaz
,
S.
,
Akar
,
M.
,
Shorten
,
R.
, and
Kalkkuhl
,
J.
,
2008
, “
Real-Time Multiple-Model Estimation of Centre of Gravity Position in Automotive Vehicles
,”
Veh. Syst. Dyn.
,
46
(
9
), pp.
763
788
.10.1080/00423110701602670
31.
Rajamani
,
R.
,
Piyabongkarn
,
D.
,
Tsourapas
,
V.
, and
Lew
,
J. Y.
,
2011
, “
Parameter and State Estimation in Vehicle Roll Dynamics
,”
IEEE Trans. Intell. Transp. Syst.
,
12
(
4
), pp.
1558
1567
.10.1109/TITS.2011.2164246
32.
Umeno
,
T.
,
Asano
,
K.
,
Ohashi
,
H.
,
Yonetani
,
M.
,
Naitou
,
T.
, and
Taguchi
,
T.
,
2001
, “
Observer Based Estimation of Parameter Variations and Its Application to Tyre Pressure Diagnosis
,”
Control Eng. Pract.
,
9
(
6
), pp.
639
645
.10.1016/S0967-0661(01)00037-5
33.
Wang
,
J.
,
Alexander
,
L.
, and
Rajamani
,
R.
,
2004
, “
Friction Estimation on Highway Vehicles Using Longitudinal Measurements
,”
ASME J. Dyn. Sys., Meas., Control
,
126
(
2
), pp.
265
275
.10.1115/1.1766028
34.
Carlson
,
C. R.
, and
Gerdes
,
J. C.
,
2005
, “
Consistent Nonlinear Estimation of Longitudinal Tire Stiffness and Effective Radius
,”
IEEE Trans. Control Syst. Technol.
,
13
(
6
), pp.
1010
1020
.10.1109/TCST.2005.857408
35.
Huang
,
X.
, and
Wang
,
J.
,
2011
, “
Payload Parameter Real-Time Estimation for Lightweight Vehicles
,”
Proceedings of 2011
ASME
Dynamic Systems and Control Conference.10.1115/DSCC2011-6045
36.
Rajamani
,
R.
,
Piyabongkarn
,
N.
,
Lew
,
J.
,
Yi
,
K.
, and
Phanomchoeng
,
G.
,
2010
, “
Tire-Road Friction-Coefficient Estimation
,”
IEEE Control Syst
,
30
(
4
), pp.
54
69
.10.1109/MCS.2010.937006
37.
Gustafsson
,
F.
,
1997
, “
Slip-Based Tire-Road Friction Estimation
,”
Automatica
,
33
(
6
), pp.
1087
1099
.10.1016/S0005-1098(97)00003-4
38.
Wang
,
R.
,
Chen
,
Y.
,
Feng
,
D.
,
Huang
,
X.
, and
Wang
,
J.
,
2011
, “
Development and Performance Characterization of an Electric Ground Vehicle With Independently-Actuated In-Wheel Motors
,”
J. Power Sources
,
196
(
8
), pp.
3962
3971
.10.1016/j.jpowsour.2010.11.160
39.
Chen
,
Y.
, and
Wang
,
J.
,
2012
, “
Design and Evaluation on Electric Differentials for Over-Actuated Electric Ground Vehicles With Four Independent In-Wheel Motors
,”
IEEE Trans. Veh. Technol.
,
61
(
4
), pp.
1534
1542
.10.1109/TVT.2012.2187940
40.
Jazar
,
R. N.
,
2008
,
Vehicle Dynamics: Theory and Application
,
Springer
,
Riverdale, NY
.
41.
Wong
,
J. Y.
,
2008
,
Theory of Ground Vehicles
,
John Wiley & Sons
,
Hoboken, NJ
.
42.
Sastry
,
S.
, and
Bodson
,
M.
,
1989
,
Adaptive Control: Stability, Convergence and Robustness
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
43.
Shraim
,
H.
,
Ananou
,
B.
,
Fridman
,
L.
,
Noura
,
H.
, and
Ouladsine
,
M.
,
2006
, “
Sliding Mode Observers for the Estimation of Vehicle Parameters, Forces and States of the Center of Gravity
,” 2006 45th
IEEE
Conference on Decision and Control
.10.1109/CDC.2006.376777
44.
Ray
,
L. R.
,
1997
, “
Nonlinear Tire Force Estimation and Road Friction Identification: Simulation and Experiments
,”
Automatica
,
33
(
10
), pp.
1819
1833
.10.1016/S0005-1098(97)00093-9
45.
Dakhlallah
,
J.
,
Glaser
,
S.
,
Mammar
,
S.
, and
Sebsadji
,
Y.
,
2008
, “
Tire-Road Forces Estimation Using Extended Kalman Filter and Sideslip Angle Evaluation
,”
Proceedings of 2008 American Control Conference
(
ACC
).10.1109/ACC.2008.4587220
46.
Cho
,
W.
,
Yoon
,
J.
,
Yim
,
S.
,
Koo
,
B.
, and
Yi
,
K.
,
2010
, “
Estimation of Tire Forces for Application to Vehicle Stability Control
,”
IEEE Trans. Veh. Technol.
,
59
(
2
), pp.
638
649
.10.1109/TVT.2009.2034268
47.
Oxford Technical Systems
,
2006
, “
RT3000 Inertial and Measurement System User Manual.
48.
Mango
,
N.
,
2004
, “
Measurement & Calculation of Vehicle Center of Gravity Using Portable Wheel Scales
,”
SAE
Paper No. 2004-01-1076.10.4271/2004-01-1076
You do not currently have access to this content.