Active control of vehicle restraint systems has been extensively investigated in past decades. Many promising results have shown that a seat-belt system can be controlled in real-time to minimize human driver/occupant's injuries by reducing the human chest acceleration after a frontal impact. This paper presents a new nonlinear model that groups the seat-belt restraint system and the human driver's nonlinear high-coupling dynamics together to form a cascaded system. By using a backstepping design procedure, a global control law is developed and aimed to actively and continuously adjust the seat-belt strain force so as to interact both the human's shoulder/chest and waist. Both the control theory development and 3D graphical simulation study show that the overall system stability is well achieved. Even if up to a freeway speed, such as at 65 mph, the accelerations of the three major human body joints: lumber, thorax, and neck after a frontal collision can still be reduced significantly.

References

References
1.
National Highway Traffic Safety Administration
, “
What You Need to Know About Airbags
,” http://www.nhtsa.gov/people/injury/airbags/airbags03/images/Air%20Bags0307.pdf
2.
Braver
,
E. R.
,
Ferguson
,
S. A.
,
Greene
,
M. A.
, and
Lund
,
A. K.
,
1997
, “
Reductions in Deaths in Frontal Crashes Among Right Front Passengers in Vehicles Equipped With Passenger Air Bags
,”
J. Am. Med. Assoc.
,
278
(
17
), pp.
1437
1439
.10.1001/jama.1997.03550170067034
3.
Miller
,
H. J.
, and Maripudi, V.,
1996
, “
Restraint Force Optimization for a Smart Restraint System
,”
Proceedings of the
SAE
International Congress and Exposition
,
Detroit
, Paper No. 960662, pp.
79
84
.10.4271/960662
4.
Miller
,
H. J.
, and
Dybro
,
N.
,
1996
, “
Seat Belt Retractor With Integrated Load Limiter
,” U.S. Patent No. 5,547,143.
5.
Blackburn
,
B. K.
,
Gentry
,
S. B.
, and
Mazur
,
J. F.
,
2000
, “
Occupant Restraint System and Control Method With Variable Occupant Position Boundary
,” U.S. Patent No. 6,018,693.
6.
Juna
,
A. F.
,
Al-Habaibeh
,
A.
,
Whitby
,
D. R.
,
Parkin
,
R. M.
,
Jackson
,
M. R.
,
Mansi
,
M.
, and
Coy
,
J.
,
2003
, “
Smart Restraint Systems Utilizing Low Cost Infra-Red Sensors
,”
Proceedings of International Conference on Mechatronics (ICOM 2003)
, pp.
255
260
.
7.
Dinsdale
,
P.
,
Greene
,
D. J.
, and
Young
,
A. M.
,
2006
, “
Dual Stage Inflator With Extended Gas Delivery for a Vehicular Airbag System
,” U.S. Patent No. 7,004,500.
8.
Paulitz
,
T. J.
,
Blackketter
,
D. M.
, and
Rink
,
K. K.
,
2006
, “
Constant Force Restraints For Frontal Collisions
,”
Proc. Instn. Mech. Engrs., Part D: J. Autom Eng.
,
220
(
9
), pp.
1177
1189
.10.1243/09544070JAUTO306
9.
Clute
,
G.
,
2001
, “
Potentials of Adaptive Limitation Presentation and System Validation of the Adaptive Load Limiter
,”
Proceedings of the 17th International Technical Conference on the Enhanced Safety of Vehicles, NHTSA
,
Amsterdam, The Netherlands
, pp.
113
134
.
10.
Iyota
,
T.
, and
Ishikawa
,
T.
,
2003
, “
The Effect of Occupant Protection by Controlling Airbag and Seatbelt
,”
Proceedings of the 18th International Technical Conference on the Enhanced Safety of Vehicles, NHTSA
,
Nagoya, Japan
, pp.
1
10
.
11.
Braver
,
E. R.
,
Scerbo
,
M.
,
Kufera
,
J. A.
,
Alexander
,
M. T.
,
Volpini
,
K.
, and
Lloyd
,
J. P.
,
2008
, “
Deaths Among Drivers and Right-Front Passengers in Frontal Collisions: Redesigned Air Bags Relative to First-Generation Air Bags
,”
Traffic Injury Prev.
,
9
(
1
), pp.
48
58
.10.1080/15389580701722787
12.
Crandall
,
J. R.
,
Cheng
,
Z.
, and
Pilkey
,
W. D.
,
2000
, “
Limiting Performance of Seat Belt Systems for the Prevention of Thoracic Injuries
,”
Proc. Instn. Mech. Engrs., Part D: J. Autom Eng.
,
214
(
2
), pp.
127
139
.10.1177/095440700021400202
13.
Kent
,
R. W.
,
Balandin
,
D. V.
,
Bolotnik
,
N. N.
,
Pilkey
,
W. D.
, and
Purtsezov
,
S. V.
,
2007
, “
Optimal Control of Restraint Forces in an Automobile Impact
,”
ASME J. Dyn. Sys., Meas., Control
,
129
(
4
), pp.
415
424
.10.1115/1.2718240
14.
Paulitz
,
T. J.
,
Blackketter
,
D. M.
, and
Rink
,
K. K.
,
2005
, “
Fully-Adaptive Seatbelts for Frontal Collisions
,”
Proceedings of 19th International Technical Conference on the Enhanced Safety of Vehicles
,
Washington, DC
,
June 6–9
.
15.
Hesseling
,
R. J.
,
Steinbuch
,
M.
,
Veldpaus
,
F. E.
, and
Klisch
,
T.
,
2006
, “
Identification and Control of a Vehicle Restraint System
,”
Proc. Instn. Mech. Engrs., Part D: J. Autom Eng.
,
220
(
4
), pp.
401
413
.10.1243/09544070JAUTO29
16.
Griotto
,
G.
,
Lemmen
,
P.
,
van den Eijnden
,
E.
,
van Leijsen
,
A.
,
van Schie
,
C.
, and
Cooper
,
J.
,
2007
, “
Real Time Control of Restraint Systems in Frontal Crashes
,”
SAE
International Conference
,
Detroit, MI
, Paper No. 2007-01-1504.10.4271/2007-01-1504
17.
Shin
,
H. S.
,
Yeo
,
T. J.
, and
Ha
,
W. P.
,
2007
, “
The Numerical Study for the Adaptive Restraint System
,”
Proceedings of the
SAE
2007 World Congress
,
Detroit, MI
.10.4271/2007-01-1500
18.
van der Laan
,
E.
,
Veldpaus
,
F.
,
van Schie
,
C.
, and
Steinbuch
,
M.
,
2007
, “
State Estimator Design for Real-Time Controlled Restraint Systems
,”
Proceedings of the 2007 American Control Conference
(
ACC
'07),
New York
,
July 9–13
.10.1109/ACC.2007.4282870
19.
van der Laan
,
E.
,
Veldpaus
,
F.
,
de Jager
,
B.
, and
Steinbuch
,
M.
,
2009
, “
Control-Oriented Modelling of Occupants in Frontal Impacts
,”
Int. J. Crashworthiness
,
14
(
4
), pp.
323
337
.10.1080/13588260902774937
20.
TNO MADYMO BV
,
2005
, “
MADYMO Manual
,” Version 6.3, TNO Road-Vehicles Research Institute, Delft, The Netherlands.
21.
Murad
,
M.
,
Cheok
,
K. C.
, and
Das
,
M.
,
2009
, “
Intelligent Adaptive Occupant Restraint System
,”
Proceedings of
IEEE
Southeastcon Conference
, pp.
126
131
.10.1109/SECON.2009.5174062
22.
Gu
,
E.
,
Teng
,
Y.
, and
Oriet
,
L.
,
2003
, “
A Minimum-Effort Motion Algorithm for Digital Human Models
,”
Proceedings of the 2003
SAE
International Conference on Digital Human Modeling for Design and Engineering
,
Montreal, Canada
,
June 16–19
, Paper No. 2003-01-2228.10.4271/2003-01-2228
23.
Gu
,
E. Y. L.
,
2010
,
Robotic Kinematics, Dynamics and Control (Lecture Notes)
,
2nd ed.
,
Oakland University
,
Rochester, MI
.
24.
Gu
,
Y. L.
, and
Loh
,
N. K.
,
1988
, “
Dynamic Modeling and Control by Utilizing an Imaginary Robot Model
,”
IEEE J. Rob. Autom.
,
4
(
5
), pp.
532
540
.10.1109/56.20438
25.
Gu
,
Y. L.
,
1991
, “
Modeling and Simplification for Dynamic Systems With Testing Procedures and Metric Decomposition
,”
Proceedings of 1991
IEEE
International Conference on Systems, Man, and Cybernetics
,
Charlottesville, VA
.,
Oct. 13–16
, pp.
487
492
.10.1109/ICSMC.1991.169731
26.
Gu
,
E. Y. L.
,
2000
, “
Configuration Manifolds and Their Applications to Robot Dynamic Modeling and Control
,”
IEEE Trans. Rob. Autom.
,
16
(
5
), pp.
517
527
.10.1109/70.880802
27.
Slotine
,
J.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice-Hall
,
New Jersey
.
28.
Gu
,
E. Y. L.
,
2009
,
Modern Theories of Nonlinear Systems and Control (Lecture Notes)
,
2nd ed.
,
Oakland University
,
Rochester, MI
.
29.
Kristic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P.
,
1995
,
Nonlinear and Adaptive Control Design
,
John Wiley & Sons, Inc.
,
New York
.
30.
Eppinger
,
R.
,
Sun
,
E.
,
Bandak
,
F.
,
Haffner
,
M.
,
Khaewpong
,
N.
, and
Maltese
,
M.
, “
Development of Improved Injury Criteria for Assessment of Advanced Automotive Restraint Systems—II
,” http://www.nhtsa.gov/DOT/NHTSA/NRD/Multimedia/PDFs/Crashworthiness/Air%20Bags/rev_criteria.pdf
You do not currently have access to this content.