A parameter estimation method is presented by an example of an electrohydraulic position servo. The method is based on the Markov chain Monte Carlo approach. The method allows utilization of noisy measurement data in identification process, making use of original physical data possible without the requirement of a filter. The method seeks for the best fitting point estimate of the unknown model parameter vector, but the solution to the parameter estimation problem is given as a statistical distribution that contains “all” the possible parameter combinations. The robustness of the model developed with the proposed method is further demonstrated by verification in operating conditions that are independent of each other and the one used in the identification step. Results show that the system model with the hybrid leakage formula for the studied valve describes the system dynamics more precisely and matches the real responses better.

References

References
1.
Jelali
,
M.
, and
Kroll
,
A.
,
2003
,
Hydraulic Servo-Systems—Modelling, Identification and Control
,
Springer
,
London
.
2.
La
Hera
,
P. M.
,
Mettin
,
U.
,
Westerberg
,
S.
, and
Shiriaev
,
A. S.
,
2009
, “
Modeling and Control of Hydraulic Rotary Actuators Used in Forestry Cranes
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May
12–17
,
pp.
1315
1320
.
3.
Liu
,
Y.
, and
Handroos
,
H.
,
1999
, “
Sliding Mode Control for a Class of Hydraulic Position Servo
,”
Mechatronics
,
9
,
pp.
111
123
.10.1016/S0957-4158(98)00044-0
4.
Hirvonen
,
M.
,
Pyrhönen
,
O.
, and
Handroos
,
H.
,
2006
, “
Adaptive Nonlinear Velocity Controller for a Flexible Mechanism of a Linear Motor
,”
Mechatronics
,
16
,
pp.
279
290
.10.1016/j.mechatronics.2005.12.002
5.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
De Wit
,
C. C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
),
pp.
1083
1138
.10.1016/0005-1098(94)90209-7
6.
Zung
,
P. S.
, and
Perng
,
M. H.
,
2002
, “
Nonlinear Dynamic Model of a Two-Stage Pressure Relief Valve for Designers
,”
ASME J. Dyn. Syst., Meas., Control
,
124
,
pp.
62
66
.10.1115/1.1435363
7.
Ferreira
,
J. A.
,
De Almeida
,
F. G.
, and
Quintas
,
M. R.
,
2002
, “
Semi-Empirical Model for a Hydraulic Servo-Solenoid Valve
,”
Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng.
,
216
(
3
),
pp.
237
248
.10.1177/095965180221600303
8.
Lyshevski
,
S. E.
,
2001
, “
Identification of Nonlinear Systems With Noisy Data: A Nonlinear Mapping-Based Concept in Time Domain
,”
Proceedings of American Control Conference, Arlington, VA
,
2
,
pp.
1634
1635
.
9.
Eryilmaz
,
B.
, and
Wilson
,
B. H.
, “
Combining Leakage and Orifice Flows in a Hydraulic Servovalve Model
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
3
),
pp.
576
579
.10.1115/1.1286335
10.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbruth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
,
1953
, “
Equations of State Calculations by Fast Computing Machine
,”
J. Chem. Phys.
,
21
,
pp.
1087
1091
.10.1063/1.1699114
11.
Gelfand
,
A. E.
, and
Smith
,
A. F. M.
,
1990
, “
Sampling-Based Approaches to Calculate Marginal Densities
,”
J. Am. Stat. Assoc.
,
85
,
pp.
398
409
.10.2307/2289776
12.
Haario
,
H.
,
Laine
,
M.
,
Lehtinen
,
M.
,
Saksman
,
E.
, and
Tamminen
,
J.
,
2004
, “
Markov Chain Monte Carlo Methods for High Dimensional Inversion in Remote Sensing
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
66
(
3
),
pp.
591
607
.10.1111/j.1467-9868.2004.02053.x
13.
Liu
,
J.
,
Wu
,
H.
,
Handroos
,
H.
, and
H.
Haario
,
2011
, “
Study of Leakage Model for Servo Valve
,”
Proceedings IEEE International Conference Mechatronics and Automation
,
pp.
831
836
.
14.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
John Wiley & Sons
,
New York.
15.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Åström
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
),
pp.
419
425
.10.1109/9.376053
16.
Olsson
,
H.
,
1996
, “
Control Systems With Friction
,”
Ph.D. thesis
,
Lund Institute of Technology, University of Lund
,
Sweden
.
17.
Haario
,
H.
,
1995
, “
MODEST User Guide
,”
ProfMath Company
.
18.
Haario
,
H.
,
Saksman
,
E.
, and
Tamminen
,
J.
,
2001
, “
An Adaptive Metropolis Algorithm
,”
Bernoulli
,
7
(
2
),
pp.
223
242
.10.2307/3318737
19.
Mira
,
A.
,
2001
, “
On Metropolis-Hastings Algorithms With Delayed Rejection
,”
Metron
,
59
(
3-4
),
pp.
231
241
.
20.
Haario
,
H.
,
Laine
,
M.
,
Mira
,
A.
, and
Saksman
,
E.
,
2006
, “
DRAM: Efficient Adaptive MCMC
,”
Stat. Comput.
,
16
,
pp.
339
354
.10.1007/s11222-006-9438-0
21.
Mathworks, Inc.
,
2005, Real Time Workshop User's Guide.
22.
Silverman
,
B. W.
,
1986
, “
Density Estimation for Statistics and Data Analysis
,”
Chapman and Hall
,
London
.
You do not currently have access to this content.