This paper proposes a new approach to estimate the velocity of mechanical system in the case where the optical incremental encoder is used as the position sensor. First, the actual angular position is reconstructed via moving horizon polynomial fitting method by taking account of quantization feature and the plant dynamics. Then, the reconstruction signal is applied to a classical observer to obtain the velocity estimation. Its robustness against the position sensor resolution and the degree of the polynomial is discussed by some numerical examples. Experiments with very low-resolution encoder in low speed range also confirm its effectiveness.

References

References
1.
Lorenz
,
R. D.
,
2001
, “
Robotics and Automation Applications of Drives and Converters
,”
Proc. IEEE
,
89
(
6
), pp.
951
962
.10.1109/5.931495
2.
Devasia
,
S.
,
Eleftheriou
,
E.
, and
Moheimani
,
S. O. R.
,
2007
, “
A Survey of Control Issues in Nanopositioning
,”
IEEE Trans. Control Syst. Technol.
,
15
(
5
), pp.
802
823
.10.1109/TCST.2007.903345
3.
Song
,
Y.
,
Gao
,
H.
,
Zhang
,
S.
,
Tian
,
Y.
, and
Wang
,
D.
,
2009
, “
The Analysis and Design of Low Velocity Estimation Based on Observer
,”
Proceedings of the IEEE International Conference on Automation and Logistics
,
Shenyang, China
, pp.
766
771
.
4.
Lorenz
,
R. D.
, and
Van Patten
,
K. W.
,
1991
, “
High-Resolution Velocity Estimation for All-Digital, AC Servo Drives
,”
IEEE Trans. Ind. Appl.
,
27
(
4
), pp.
701
705
.10.1109/28.85485
5.
Kwon
,
S. J.
,
Chung
,
W. K.
, and
Youm
,
Y.
,
2003
, “
A Combined Observer for Robust State Estimation and Kalman Filtering
,”
Proceedings of the American Control Conference
,
Denver, CO
, Vol.
3
, pp.
2459
2464
.
6.
Bélanger
,
P. R.
,
Dobrovolny
,
P.
,
Helmy
,
A.
, and
Zhang
,
X.
,
1998
, “
Estimation of Angular Velocity and Acceleration From Shaft-Encoder Measurements
,”
Int. J. Robot. Res.
,
17
(
11
), pp.
1225
1233
.10.1177/027836499801701107
7.
Carpenter
,
P. S.
,
Brown
,
R. H.
,
Heinen
,
J. A.
, and
Schneider
,
S. C.
,
1995
, “
On Algorithms for Velocity Estimation Using Discrete Position Encoders
,”
Proceedings of the 34th IEEE Conference on Decision and Control
, pp.
844
849
.
8.
Vainio
,
O.
, and
Ovaska
,
S. J.
,
1997
, “
A Class of Predictive Analog Filters for Sensor Signal Processing and Control Instrumentation
,”
IEEE Trans. Ind. Electron.
,
44
(
4
), pp.
565
570
.10.1109/41.605635
9.
Ovaska
,
S. J.
,
1991
, “
Improving the Velocity Sensing Resolution of Pulse Encoders by FIR Prediction
,”
IEEE Trans. Instrum. Meas.
,
40
(
3
), pp.
657
658
.10.1109/19.87041
10.
Su
,
Y. X.
,
Zheng
,
C. H.
,
Mueller
,
P. C.
, and
Duan
,
B. Y.
,
2006
, “
A Simple Improved Velocity Estimation for Low-Speed Regions Based on Position Measurements Only
,”
IEEE Trans. Control Syst. Technol.
,
14
(
5
), pp.
937
942
.10.1109/TCST.2006.876917
11.
Bascetta
,
L.
,
Magnani
,
G.
, and
Rocco
,
P.
,
2009
, “
Velocity Estimation: Assessing the Performance of Non-Model-Based Techniques
,”
IEEE Trans. Control Syst. Technol.
,
17
(
2
), pp.
424
433
.10.1109/TCST.2008.2001054
12.
Brown
,
R. H.
,
Schneider
,
S. C.
, and
Mulligan
,
M. G.
,
1992
, “
Analysis of Algorithms for Velocity Estimation From Discrete Position Versus Time Data
,”
IEEE Trans. Ind. Electron.
,
39
(
1
), pp.
11
19
.10.1109/41.121906
13.
Zhu
,
W.-H.
, and
Lamarche
,
T.
,
2007
, “
Velocity Estimation by Using Position and Acceleration Sensors
,”
IEEE Trans. Ind. Electron.
,
54
(
5
), pp.
2706
2715
.10.1109/TIE.2007.893050
14.
Jeon
,
S.
, and
Tomizuka
,
M.
,
2007
, “
Benefits of Acceleration Measurement in Velocity Estimation and Motion Control
,”
Control Eng. Pract.
,
15
, pp.
325
332
.10.1016/j.conengprac.2005.10.004
15.
Zhu
,
H.
, and
Sugie
,
T.
,
2011
, “
Reconstruction of Plant Output From Quantized Measurement—A Moving Horizon Polynomial Fitting Approach
,”
18th World Congress IFAC
, Milano, Italy, pp.
7444
7449
.
16.
Hirata
,
M.
, and
Kidokoro
,
T.
,
2009
, “
Servo Performance Enhancement of Motion System Via a Quantization Error Estimation Method—Introduction to Nanoscale Servo Control
,”
IEEE Trans. Ind. Electron.
,
56
(
10
), pp.
3817
3824
.10.1109/TIE.2009.2015751
17.
Middleton
,
R. H.
, and
Goodwin
,
G. C.
,
1990
,
Digital Control and Estimation, A Unified Approach
,
Prentice-Hall
,
Englewood Cliffs, CA
.
18.
Gautschi
,
W.
,
1975
, “
Optimally Conditioned Vandermonde Matrices
,”
Numer. Math.
,
24
, pp.
1
12
.10.1007/BF01437212
19.
Strang
,
G.
,
1986
,
Introduction to Applied Mathematics
,
Wellesley-Cambridge Press
,
Wellesley, MA
.
20.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
New York
.
21.
Mattingley
,
J.
,
Wang
,
Y.
, and
Boyd
,
S.
,
2010
, “
Code Generation for Moving Horizon Control
,”
Proceedings of the IEEE Multi-Conference on Systems and Control
,
Yokohama, Japan
, pp.
985
992
.
22.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
de Wit
,
C. C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.10.1016/0005-1098(94)90209-7
You do not currently have access to this content.