Direct acting piezoelectric injectors seem to be a promising alternative to the electromagnetic ones because they permit a continuous control of the aperture. This characteristic can improve the performances and minimize the emissions of diesel engines. To exploit the potentialities of this kind of actuation, it is necessary to minimize the effects of the hysteretic behavior of piezoelectric materials. For this reason, the behavior of the actuator has to be modeled taking this effect into account. Additionally, the effects of the temperature must be considered, given the particularly critical position of the injectors near the engine. A modeling approach of piezoelectric injectors, including hysteresis and temperature effects as well as the electromechanical dynamic, is described in this paper. The model is based on a linear finite element (FE) discretization of the piezoelectric stack and the injector case. The hysteretic behavior is included in a second step by means of additional nonlinear state equations while the temperature effects are taken into account considering the temperature dependence of the material characteristics. A dedicated test bench has then been realized and experimental tests have been performed on piezoelectric injectors, with driving voltages and temperatures commonly used in automotive environment. The collected data allow to tune the model and to verify its validity even out of the tuning conditions.

References

References
1.
IEEE Standard on Piezoelectricity
,”
ANSI/IEEE Std 176-1987
2.
Chiaberge
,
M.
,
Tonoli
,
A.
,
Botto
,
G.
,
de Giuseppe
,
M.
,
Carabelli
,
S.
, and
Maddaleno
,
F.
,
2010
, “
Model and Design of a Power Driver for Piezoelectric Stack Actuators
,”
EURASIP J. Embedded Syst.
,
2010
,
pp.
1
9
.10.1155/2010/578591
3.
Preisach
,
F.
,
1935
, “
Über die magnetische Nachwirkung
,”
Z. Phys. A: Hadrons Nucl.
,
94
(
5–6
),
pp.
277
302
.
4.
Mayergoyz
,
I. D.
,
1986
, “
Mathematical Models of Hysteresis
,”
Phys. Rev. Lett.
,
56
(
15
),
pp.
1518
1521
.10.1103/PhysRevLett.56.1518
5.
Ang
,
W.
,
Garmòn
,
F.
,
Khosla
,
P.
, and
Riviere
,
C.
,
2003
, “
Modeling Rate-Dependent Hysteresis in Piezoelectric Actuators
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vol.
2
,
pp.
1975
1980
.
6.
Bashash
,
S.
, and
Jalili
,
N.
,
2008
, “
A Polynomial-Based Linear Mapping Strategy for Feedforward Compensation of Hysteresis in Piezoelectric Actuators
,”
ASME J. Dyn. Syst., Meas., Control
,
130
(
3
),
031008
.10.1115/1.2907372
7.
Coleman
,
B. D.
, and
Hodgdon
,
M. L.
,
1986
, “
A Constitutive Relation for Rate Independent Hysteresis in Ferromagnetically Soft Materials
,”
Int. J. Eng. Sci.
,
24
(
6
),
pp.
897
919
.10.1016/0020-7225(86)90023-6
8.
Hodgdon
,
M. L.
,
1988
, “
Mathematical Theory and Calculations of Magnetic Hysteresis Curves
,”
IEEE Trans. Magn.
,
24
(
6
),
pp.
3120
3122
.10.1109/20.92354
9.
Ossart
,
F.
, and
Meunier
,
G.
,
1990
, “
Comparison Between Various Hysteresis Models and Experimental Data
,”
IEEE Trans. Magn.
,
26
(
5
),
pp.
2837
2839
.10.1109/20.104893
10.
Adriaens
,
H.
,
Banning
,
R.
, and
de Koning
,
W. L.
,
2000
, “
Modeling Piezoelectric Actuators
,”
IEEE/ASME Trans. Mechatron.
,
5
(
4
),
pp.
331
341
.10.1109/3516.891044
11.
Prandtl
,
L.
,
1928
, “
Ein Gedankenmodell zur kinetischen Theorie der festen Korper
,”
Z. Angew. Math. Mech.
,
pp.
85
106
.10.1002/zamm.19280080202
12.
Krasnoselskii
,
M. A.
, and
Pokrovskii
,
A. M.
,
1989
,
Systems With Hysteresis
,
Nauka, Moscow
.
13.
Guyan
,
R. J.
,
1964
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
),
pp.
380
.
14.
Dubra
,
A.
,
Massa
,
J.
, and
Paterson
,
C.
,
2005
, “
Preisach Classical and Nonlinear Modeling of Hysteresis in Piezoceramic Deformable Mirrors
,”
Opt. Express
,
13
(
22
),
pp.
9062
9070
.10.1364/OPEX.13.009062
15.
Ishlinskii
,
A. Yu
,
1944
, “
Some Applications of Statistical Methods to Describing Deformations of Bodies
,”
Izv. AN SSSR Technical Series
,
9
,
pp.
580
590
.
16.
Fukada
,
E.
,
2000
, “
Hystory and Recent Progress in Piezoelectric Polymers
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
47
(
6
),
pp.
1277
1290
.10.1109/58.883516
17.
Furukawa
,
T.
,
Date
,
M.
,
Fukada
,
E.
,
Tajitsu
,
Y.
, and
Chiba
,
A.
,
1980
, “
Ferroelectric Behavior in the Copolymer of Vinylidenefluoride and Trifluoroethylene
,”
Jpn. J. Appl. Phys.
,
19
,
pp.
L109
L112
.10.1143/JJAP.19.L109
18.
Li
,
H. D.
,
Feng
,
C. D.
, and
Yao
,
W. L.
,
2004
, “
Some Effects of Different Additives on Dielectric and Piezoelectric Properties of (Bi1/2Na1/2)TiO3–BaTiO3 Morphotropic Phase Boundary Composition
,”
Mater. Lett.
,
58
,
pp.
1194
1198
.10.1016/j.matlet.2003.08.034
19.
Weaver
,
P. M.
,
2011
, “
A Sensorless Drive System for Controlling Temperature-Dependent Hysteresis in Piezoelectric Actuators
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
58
(
4
),
pp.
704
710
.10.1109/TUFFC.2011.1863
20.
Senousy
,
M. S.
,
Li
,
X. F.
,
Mumford
,
D.
,
Gadala
,
M.
, and
Rajapakse
,
R. K. N. D.
,
2009
, “
Thermo-Electro-Mechanical Performance of Piezoelectric Stack Actuators for Fuel Injector Applications
,”
J. Intell. Mater. Syst. Struct.
,
20
(
4
),
pp.
387
399
.10.1177/1045389X08095030
21.
Senousy Youssef
,
M. S.
,
2009
, “
Experimental Investigation and Theoretical Modeling of Piezoelectric Actuators Used in Fuel Injectors
,”
Ph.D. thesis
,
University of British Columbia
, Vancouver.
22.
Hoffmann
,
R.
, and
Wolpert
,
H.
, “
Method for Determining a Functional State of a Piezoelectric Injector of an Internal Combustion Engine
,”
Continental Automotive GmbH
, Patent No. WO 2008/015122 A1.
You do not currently have access to this content.