Dynamics modeling is becoming more and more important in the development and control of unmanned aerial vehicles (UAV). An accurate model of a vehicle requires good knowledge of the dynamics properties and motion states, which are usually estimated with the help of integrated inertial measurement units (IMUs). This work develops a special six degrees of freedom IMU, which has the capability of measuring the angular accelerations. This paper introduces the design of the new IMU along with its sensor models and calibration procedures. The work introduces two experimental methods to verify the calibrated IMU readings. The IMU was designed to support an on-line methodology to estimate the parameters of UAV’s dynamics model that is currently being developed by the authors.

References

References
1.
Dissanayake
,
G.
,
Sukarieh
,
S.
,
Nebto
,
E.
, and
Durrant-Whyte
,
H.
,
2001
, “
The Aiding of a Low-Cost Strap Down Inertial Measurement Unit Using Vehicle Model Constraints for Land Vehicle Applications
,”
IEEE Trans. Rob. Autom.
,
17
(
5
), pp.
731
747
.10.1109/70.964672
2.
Dinh
,
A.
,
Shi
,
Y.
,
Teng
,
D.
,
Ralhan
,
A.
,
Chen
,
L.
,
Bello-Haas
,
V. D.
,
Basran
,
J.
,
Ko
,
S.-B.
, and
McCrowsky
,
C.
,
2009
, “
A Fall and Near-Fall Assessment and Evaluation System
,”
Open Biomed. Eng. J.
,
3
, pp.
1
7
.10.2174/1874120700903010001
3.
Auersvald
,
M.
,
2008
, “
Wireless Sensor Network for Monitoring Patients With Parkinson’s Disease
,” M.S. thesis, Faculty of Electrical Engineering Department of Control Engineering, Czech Technical University, Prague.
4.
Willemsen
,
A.
,
van Alste
,
J. A.
, and
Boom
,
H.
,
1990
, “
Real-Time Gait Assessment Utilizing a New Way of Accelerometry
,”
J. Biomech.
,
23
(
8
), pp.
859
863
.10.1016/0021-9290(90)90033-Y
5.
Rodriguez-Donate
,
C.
,
Morales-Velazquez, L., Osornio-Rios
,
R. A.
,
Herrera-Ruiz
,
G.
, and
Romero-Troncoso
,
R. J.
,
2010
, “
FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter Extraction in Industrial Robot Links
,”
Sensors
,
10
(
4
), pp.
4114
4129
.10.3390/s100404114
6.
Rednic
,
R.
,
Kemp
,
J.
,
Gaura
,
E.
, and
Brusey
,
J.
,
2008
, “
Posture Determination Using a Body Sensor Network
,”
Cogent Computing Applied Research Centre, Coventry University
, Technical Report No. COGENT.006.
7.
Lynch
,
A.
,
Majeed
,
B.
,
O’Flynn
,
B.
,
Barton
,
J.
,
Murphy
,
F.
,
Delaney
,
K.
, and
O’Mathuna
,
S. C.
,
2005
, “
A Wireless Inertial Measurement System (WIMS) for an Interactive Dance Environment
,”
J. Phys.: Conf. Ser.
,
15
(
1
), pp.
95
100
.10.1088/1742-6596/15/1/016
8.
Gallagher
,
A.
,
Matsuoka
,
Y.
, and
Ang
,
W.-T.
,
2004
, “
An Efficient Real-Time Human Posture Tracking Algorithm Using Low-Cost Inertial and Magnetic Sensors
,” Proceedings of 2004
IEEE
/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), Vol.
3
, pp.
2967
2972
. 10.1109/IROS.2004.1389860
9.
Dong
,
W.
,
Lim
,
K. Y.
,
Goh
,
Y. K.
,
Nguyen
,
K. D.
,
Chen
,
I.-M.
,
Yeo
,
S. H.
, and
Duh
,
H. B.-L.
,
2008
, “
A Low-Cost Motion Tracker and Its Error Analysis
,” 2008
IEEE
International Conference on Robotics and Automation (ICRA 2008),
Pasadena, CA
, May 19–23, pp.
311
316
. 10.1109/ROBOT.2008.4543226
10.
Gao
,
J.
,
Petovello
,
M. G.
, and
Cannon
,
M. E.
,
2006
, “
Development of Precise GPS/INS/Wheel Speed Sensor/Yaw Rate Sensor Integrated Vehicular Positioning System
,”
Proceedings of the National Technical Meeting of the Institute of Navigation (ION NTM’06)
,
Monterey, CA
, pp.
780
792
.
11.
Fontaine
,
D.
,
David
,
D.
, and
Caritu
,
Y.
,
2003
, “
Sourceless Human Body Motion Capture
,”
Proceedings of Smart Objects Conference
(SOC’03),
Grenoble, France
.
12.
Walchko
,
K. J.
,
Nechyba
,
M. C.
,
Schwartz
,
E.
, and
Arroyo
,
A.
,
2003
, “
Embedded Low Cost Inertial Navigation System
,”
Florida Conference on Recent Advances in Robotics
,
FAU
, Dania Beach, FL, May 8–9.
13.
Nebot
,
E.
, and
Durrant-Whyte
,
H.
,
1999
, “
Initial Calibration and Alignment of Low-Cost Inertial Navigation Units for Land Vehicle Applications
,”
J. Rob. Syst.
,
16
(
2
), pp.
81
92
.10.1002/(SICI)1097-4563(199902)16:2<81::AID-ROB2>3.0.CO;2-9
14.
Parsa
,
K.
,
Lasky
,
T. A.
, and
Ravani
,
B.
,
2007
, “
Design and Implementation of a Mechatronic, All-Accelerometer Inertial Measurement Unit
,”
IEEE/ASME Trans. Mechatron.
,
12
(
6
), pp.
640
650
.10.1109/TMECH.2007.910080
15.
Hatamleh
,
K.
,
Flores-Abad
,
A.
,
Xie
,
P.
,
Herrera
,
B.
,
Martinez
,
G.
, and
Ma
,
O.
,
2010
, “
Development of an Inertial Measurement Unit for Unmanned Aerial Vehicles
,”
7th Jordanian International Mechanical Engineering Conference (JIMEC’7)
,
Amman, Jordan
.
16.
Hatamleh
,
K. S.
,
Ma
,
O.
, and
Paz
,
R.
,
2009
, “
A UAV Model Parameter Identification Method: A Simulation Study
,”
Int. J. Inf. Acquis.
,
6
(
4
), pp.
225
238
.10.1142/S0219878909001977
17.
Hatamleh
,
K.
,
Ma
,
O.
,
Xie
,
P.
,
Martinez
,
G.
, and
McAvoy
,
J.
,
2009
, “
An UAV Parameters Identification Method
,”
AIAA Modeling and Simulation Technologies Conference and Exhibi
t
.
18.
Ovaska
,
S. J.
, and
Valiviita
,
S.
,
1998
, “
Angular Acceleration Measurement: A Review
,”
IEEE Trans. Instrum. Meas.
,
47
(
5
), pp.
1211
1217
.10.1109/19.746585
19.
Marat-Mendes
,
R.
,
Dias
,
C. J.
, and
Marat-Mendes
,
J. N.
,
1999
, “
Measurement of the Angular Acceleration Using a PVDF and a Piezo-Composite
,”
Sens. Actuators
,
76
(
1
), pp.
310
313
.10.1016/S0924-4247(99)00182-X
20.
Lin
,
P.-C.
, and
Ho
,
C.-W.
,
2009
, “
Design and Implementation of a 9-Axis Inertial Measurement Unit
,” Proceedings of the 2009
IEEE
International Conference on Robotics and Automation (ICRA’09),
Kobe, Japan
, pp.
736
741
. 10.1109/ROBOT.2009.5152546
21.
Gianfelici
,
F
.,
2005
, “
A Novel Technique for Indirect Angular Acceleration Measurement
,”
IEEE
International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA 2005), pp.
120
123
. 10.1109/CIMSA.2005.1522842
22.
Sommer
,
H. J.
, and
Buczeck
,
F. L.
,
1990
, “
Experimental Determination of the Instant Screw Axis and Angular Acceleration Axis
,”
Proceedings of the 16th Annual Northeast Bioengineering Conference
,
IEEE
, pp.
141
142
. 10.1109/NEBC.1990.66324
23.
Ma
,
J.
, and
Yao
,
Y.
,
2009
, “
Angular Acceleration Estimator for a Flight Motion Simulator: Design and Performance Comparison
,”
17th Mediterranean Conference on Control and Automation
,
Thessaloniki, Greece
, June 24–26, pp.
606
609
.
24.
STMicroelectronics, “LIS3LV02DQ: MEMS Inertial Sensor (3-Axis - ±2g/±6g Digital Output Low Voltage Linear Accelerometer),
http://www.sparkfun.com/datasheets/IC/LIS3LV02DQ.pdf.
25.
STMicroelectronics, “LPY530AL: MEMS Motion Sensor (Dual Axis Pitch and Yaw ±300°/s Analog Gyroscope),"
http://www.sparkfun.com/datasheets/Sensors/IMU/lpy530al.pdf.
26.
STMicroelectronics, “LPR530AL: MEMS Motion Sensor (Dual Axis Pitch and Roll ±300°/s Analog Gyroscope)
,” http://www.sparkfun.com/datasheets/Sensors/IMU/lpr530al.pdf.
27.
Sahawneh
,
L.
, and
Jarrah
,
M. A.
,
2008
, “
Development and Calibration of Low Cost MEMS IMU for UAV Applications
,”
5th International Symposium on Mechatronics and Its Applications
(ISMA 2008),
IEEE
, pp.
1
9
. 10.1109/ISMA.2008.4648819
28.
Skog
,
I.
, and
Handel
,
P.
,
2006
, “
Calibration of a MEMS Inertial Measurement Unit
,”
Proceedings of 17th IMEKO World Congress
.
29.
Britting
,
K. R.
,
1971
,
Inertial Navigation Systems Analysis
,
Wiley
,
New York
.
30.
Hibbeler
,
R. C.
,
2010
,
Engineering Mechanics Dynamics
,
12th
ed.,
Pearson Prentice Hall
,
New Jersey
.
You do not currently have access to this content.