The use of the atomic force microscope (AFM) as a tool to manipulate matter at the nanoscale has received a large amount of research interest in the last decade. Experimental and theoretical investigations have showed that the AFM cantilever can be used to push, cut, or pull nanosamples. However, AFM-based nanomanipulation suffers a lack of repeatability and controllability because of the complex mechanics in tip-sample interactions and the limitations in AFM visual sensing capabilities. In this paper, we will investigate the effects of the tip-sample interactions on nanopushing manipulation. We propose the use of an interaction model based on the Maugis–Dugdale contact mechanics. The efficacy of the proposed model to reproduce experimental observations is demonstrated via numerical simulations. In addition, the coupling between adhesion and friction at the nanoscale is analyzed.

References

References
1.
Bhushan
,
B.
, ed.,
2004
,
Springer Handbook of Nanotechnology
,
Springer
,
New York
.
2.
Chung
,
Y.-W.
, ed.,
2012
,
Micro- and Nanoscale Phenomena in Tribology
,
CRC Press
,
Boca Raton, FL
.
3.
Cecil
,
J.
,
Powell
,
D.
, and
Vasquez
,
D.
,
2007
, “
Assembly and Manipulation of Micro Devices—A State of the Art Survey
,”
Rob. Comput. Integr. Manuf.
,
23
, pp.
580
588
.10.1016/j.rcim.2006.05.010
4.
Eigler
,
D. M.
, and
Schweizer
,
E. K.
,
1990
, “
Positioning Single Atoms With a Scanning Tunneling Microscope
,”
Nature
,
344
, pp.
524
526
.10.1038/344524a0
5.
Bartels
,
L.
,
Meyer
,
G.
, and
Rieder
,
K.-H.
,
1997
, “
Basic Steps of Lateral Manipulation of Single Atoms and Diatomic Clusters With a Scanning Tunneling Microscope Tip
,”
Phys. Rev. Lett.
,
79
, pp.
697
700
.10.1103/PhysRevLett.79.697
6.
Decossas
,
S.
,
Mazen
,
F.
,
Baron
,
T.
,
Bremond
,
G.
, and
Souifi
,
A.
,
2003
, “
Atomic Force Microscopy Nanomanipulation of Silicon Nanocrystals for Nanodevice Fabrication
,”
Nanotechnology
,
14
, pp.
1272
1278
.10.1088/0957-4484/14/12/008
7.
Hansen
,
L. T.
,
Kuhle
,
A.
,
Sorensen
,
A. H.
,
Bohr
,
J.
, and
Lindelof
,
P. E.
,
1998
, “
A Technique for Positioning Nanoparticles Using an Atomic Force Microscope
,”
Nanotechnology
,
9
, pp.
337
342
.10.1088/0957-4484/9/4/006
8.
Resch
,
R.
,
Baur
,
C.
,
Bugacov
,
A.
,
Koel
,
B. E.
,
Madhukar
,
A.
,
Requicha
,
A. A. G.
, and
Will
,
P.
,
1998
, “
Building and Manipulating Three-Dimensional and Linked Two-Dimensional Structures of Nanoparticles Using Scanning Force Microscopy
,”
ACS J. Surf. Colloids
,
14
, pp.
6613
6616
.10.1021/la980386f
9.
Decossas
,
S.
,
Patrone
,
L.
,
Bonnot
,
A.
,
Comin
,
F.
,
Derivaz
,
M.
,
Barski
,
A.
, and
Chevrier
,
J.
,
2003
, “
Nanomanipulation by Atomic Force Microscopy of Carbon Nanotubes on a Nanostructured Surface
,”
Surf. Sci.
,
543
, pp.
57
62
.10.1016/S0039-6028(03)00919-1
10.
Ammi
,
M.
, and
Ferreira
,
A.
, “
Haptically Generated Paths of an AFM-Based Nanomanipulator Using Potential Fields
,”
2004
4th
IEEE
Conference on Nanotechnology
.10.1109/NANO.2004.1392349
11.
Hrouzek
,
M.
,
2005
, “
Feedback Control in an Atomic Force Microscope Used as a Nano-Manipulator
,”
Acta Polytech.
,
45
(
4
), pp.
65
69
. Available at http://ctn.cvut.cz/ap/download.php?id=76
12.
Fotiadis
,
D.
,
Scheuring
,
S.
,
Muller
,
S. A.
,
Engel
,
A.
, and
Muller
,
D. J.
,
2002
, “
Imaging and Manipulation of Biological Structures With the AFM
,”
Micron
,
33
, pp.
385
397
.10.1016/S0968-4328(01)00026-9
13.
Israelachvili
,
J.
,
1995
,
Intermolecular and Surface Forces
,
2nd ed.
,
Academic Press Limited
,
New York
.
14.
Schitter
,
G.
,
Menold
,
P.
,
Knapp
,
H. F.
,
Allgower
,
F.
, and
Stemmer
,
A.
,
2001
, “
High Performance Feedback for Fast Scanning Atomic Force Microscopes
,”
Rev. Sci. Instrum.
,
72
(
8
), pp.
3320
3327
.10.1063/1.1387253
15.
Stark
,
R. W.
,
Schitter
,
G.
, and
Stemmer
,
A.
,
2003
, “
Tuning the Interaction Forces in Tapping Mode Atomic Force Microscopy
,”
Phys. Rev. B
,
68
, p.
085401
.10.1103/PhysRevB.68.085401
16.
Maugis
,
D.
,
2000
,
Contact, Adhesion, and Rupture of Elastic Solids
,
Springer
,
New York
.
17.
Maugis
,
D.
,
1992
, “
Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
,
150
, pp.
243
269
.10.1016/0021-9797(92)90285-T
18.
Lantz
,
M. A.
,
O’Shea
,
S. J.
, and
Welland
,
M. E.
,
1997
, “
Atomic-Force-Microscope Study of Contact Area and Friction on NbSe2
,”
Phys. Rev. B
,
55
(
16
), pp.
10776
10785
.10.1103/PhysRevB.55.10776
19.
Bhushan
,
B.
, ed.,
1999
,
Handbook of Micro/Nano Tribology
,
2nd ed.
,
CRC Press
,
Boca Raton, FL
.
20.
Zhang
,
X.
,
Zhong
,
X.
,
Meng
,
X.
,
Yi
,
G.
, and
Jia
,
J.
,
2012
, “
Adhesion and Friction Studies of Nano-Textured Surfaces Produced by Self-Assembling Au Nanoparticles on Silicon Wafers
,”
Tribol. Lett.
,
46
, pp.
65
73
.10.1007/s11249-012-9918-7
21.
Chan
,
S.
,
Neu
,
C.
,
Komvopoulos
,
K.
, and
Reddi
,
A.
,
2011
, “
Dependence of Nanoscale Friction and Adhesion Properties of Articular Cartilage on Contact Load
,”
J. Biomech.
,
44
, pp.
1340
1345
.10.1016/j.jbiomech.2011.01.003
22.
Fujisawa
,
S.
,
Sugawara
,
Y.
,
Ito
,
S.
,
Mishima
,
S.
,
Okada
,
T.
, and
Morita
,
S.
,
1993
, “
The Two-Dimentional Stick-Slip Phenomenon With Atomic Resolution
,”
Nanotechnology
,
4
, pp.
138
142
.10.1088/0957-4484/4/3/002
23.
Fujisawa
,
S.
,
Kishi
,
E.
,
Sugawara
,
Y.
, and
Morita
,
S.
,
1994
, “
Two-Dimensionally Discrete Friction on the NaF(100) Surface With the Lattice Periodicity
,”
Nanotechnology
,
5
, pp.
8
11
.10.1088/0957-4484/6/1/002
24.
Zaghloul
,
U.
,
Bhushan
,
B.
,
Pons
,
P.
,
Papaioannou
,
G. J.
,
Coccetti
,
F.
, and
Plana
,
R.
,
2011
, “
Nanoscale Characterization of Different Stiction Mechanisms in Electrostatically Driven MEMS Devices Based on Adhesion and Friction Measurements
,”
J. Colloid Interface Sci.
,
358
, pp.
1
13
.10.1016/j.jcis.2011.03.005
25.
Xu
,
L.
,
Ma
,
T.-B.
,
Hu
,
Y.-Z.
, and
Wang
,
H.
,
2011
, “
Vanishing Stick-Slip Friction in Few-Layer Graphenes: The Thickness Effect
,”
Nanotechnology
,
22
, p.
285708
.10.1088/0957-4484/22/28/285708
26.
Sasaki
,
N.
,
Okamoto
,
H.
, and
Itamura
,
N.
,
2011
, “
Model Simulation of Adhesion and Friction of Nano-Scale Brush
,”
J. Surf. Sci. Nanotechnol.
,
9
, pp.
409
415
.10.1380/ejssnt.2011.409
27.
Landolsi
,
F.
,
Ghorbel
,
F. H.
, and
Dabney
,
J. B.
,
2007
, “
An AFM-Based Nanomanipulation Model Describing the Atomic Two Dimensional Stick-Slip Behavior
,” Proceedings of the 2007
ASME
International Mechanical Engineering Congress and Exposition,
Seattle, WA
, Nov. 11–15. 10.1115/IMECE2007-42529
28.
Landolsi
,
F.
,
Ghorbel
,
F. H.
,
Lou
,
J.
,
Lu
,
H.
, and
Sun
,
Y.
,
2009
, “
Nanoscale Friction Dynamic Modeling
,”
ASME J. Dyn. Sys., Meas., Control
,
131
, p.
061102
.10.1115/1.3223620
29.
Landolsi
,
F.
,
Sun
,
Y.
,
Lu
,
H.
,
Ghorbel
,
F. H.
, and
Lou
,
J.
, “
Regular and Reverse Nanoscale Stick-Slip Behavior: Modeling and Experiments
,”
Appl. Surf. Sci.
,
256
, pp.
2577
2582
.10.1016/j.apsusc.2009.10.107
30.
Haessig
,
D. A.
, and
Friedland
,
B.
,
1991
, “
On the Modeling and Simulation of Friction
,”
ASME J. Dyn. Sys. Meas. Control
,
113
, pp.
354
362
.10.1115/1.2896418
31.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
32.
Fujisawa
,
S.
,
Kishi
,
E.
,
Sugawara
,
Y.
, and
Morita
,
S.
,
1995
, “
Load Dependence of Two Dimensional Atomic Scale Friction
,”
Phys. Rev. B
,
52
(
7
), pp.
5302
5305
.10.1103/PhysRevB.52.5302
33.
Fujisawa
,
S.
,
Kishi
,
E.
,
Sugawara
,
Y.
, and
Morita
,
S.
,
1995
, “
Atomic-Scale Friction Observed With a Two-Dimensional Frictional-Force Microscope
,”
Phys. Rev. B
,
51
(
12
), pp.
7849
7857
.10.1103/PhysRevB.51.7849
34.
Kerssemakers
,
J.
, and
de Hosson
,
J. T. M.
,
1996
, “
Influence of Spring Stiffness and Anisotropy on Stick-Slip Atomic Force Microscopy Imaging
,”
J. Appl. Phys.
,
80
(
2
), pp.
623
631
.10.1063/1.362870
35.
Morita
,
S.
,
Fujisawa
,
S.
, and
Sugawara
,
Y.
,
1996
, “
Spatially Quantized Friction With a Lattice Periodicity
,”
Surf. Sci. Rep.
,
23
, pp.
1
41
.10.1016/0167-5729(95)00009-7
36.
Marton
,
L.
, and
Lantos
,
B.
,
2006
, “
Identification and Model-Based Compensation of Striebeck Friction
,”
Acta Polytech. Hungar.
,
3
(
3
), pp.
45
58
. Available at http://www.uni-obuda.hu/journal/Marton_Lantos_7.pdf
37.
Mueller-Hoeppe
,
D.
,
Loehnert
,
S.
, and
Reese
,
S.
, eds.,
2011
,
Recent Developments and Innovative Applications in Computational Mechanics
,
Springer
,
New York
.
38.
Tafazzoli
,
A.
, and
Sitti
,
M.
,
2004
, “
Dynamic Behavior and Simulation of Nanoparticle Sliding During Nanoprobe-Based Positioning
,” Proceedings of the
ASME
International Mechanical Engineering Congress,
Anaheim
,
CA
, Nov. 13–19. 10.1115/IMECE2004-62470
39.
Tafazzoli
,
A.
,
Pawashe
,
C.
, and
Sitti
,
M.
,
2005
, “
Atomic Force Microscope Based Two-Dimensional Assembly of Micro/Nanoparticles
,” Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, The 6th
IEEE
International Symposium
, July 19–21, pp.
230
235
.10.1109/ISATP.2005.1511478
40.
Zhou
,
Q.
,
Kallio
,
P.
,
Arai
,
F.
,
Fukuda
,
T.
, and
Koivoc
,
H. N.
,
1999
, “
A Model for Operating Spherical Micro Objects
,”
International Symposium on Micromechatronics and Human Science
.
41.
Garcia
,
R.
, and
San Paulo
,
A.
,
2000
, “
Dynamics of a Vibrating Tip Near or in Intermittent Contact With a Surface
,”
Phys. Rev. B
,
61
(
20
), pp.
R13381
R13384
.10.1103/PhysRevB.61.R13381
42.
Junno
,
T.
,
Deppert
,
K.
,
Montelius
,
L.
, and
Samuelson
,
L.
,
1995
, “
Controlled Manipulation of Nanoparticles With an Atomic Force Microscope
,”
Appl. Phys. Lett.
,
66
(
26
), pp.
3627
3629
.10.1063/1.113809
43.
Gnecco
,
E.
,
Bennewitz
,
R.
,
Gyalog
,
T.
, and
Meyer
,
E.
,
2001
, “
Friction Experiments on the Nanometre Scale
,”
J. Phys.: Condens. Matter
,
13
, pp.
R619
R642
.10.1088/0953-8984/13/31/202
You do not currently have access to this content.