This paper proposes two novel convolution-based trajectory generation methods using physical system limits such as maximum velocity, maximum acceleration, and maximum jerk. Convolution is a mathematical operation on two functions of an input function and a convoluted function, producing an output function that is typically viewed as a modified version of input function. Time duration parameters of the convoluted functions with a unit area are determined from the given physical system limits. The convolution-based trajectory generation methods to be proposed in this paper have three advantages; first, a continuously differentiable trajectory is simply obtained by applying successive convolution operations; second, a resultant trajectory is always generated satisfying the given physical system limits; third, the suggested methods have low computational burden thanks to recursive form of convolution operation. The suggested methods consider both zero and nonzero initial/terminal conditions. Finally, the effectiveness of the suggested methods is shown through numerical simulations.

References

References
1.
Craig
,
J. J.
,
1989
,
Introduction to Robotics
,
Addison-Wesley
,
New York
.
2.
Constantinescu
,
D.
, and
Croft
,
E. A.
,
2000
, “
Smooth and Time-Optimal Trajectory Planning for Industrial Manipulators Along Specified Paths
,”
J. Rob. Syst.
,
17
, pp.
233
249
.10.1002/(SICI)1097-4563(200005)17:5<233::AID-ROB1>3.0.CO;2-Y
3.
Mizoshita
,
Y.
,
Hasegawa
,
S.
, and
Takaishi
,
K.
,
1996
, “
Vibration Minimized Access Control for Disk Drives
,”
IEEE Trans. Magn.
,
32
, pp.
1793
1798
.10.1109/20.492867
4.
Tsuji
,
T.
,
Tanaka
,
Y.
,
Morasso
,
P. G.
,
Sanguincti
,
V.
, and
Kaneko
,
M.
,
2002
, “
Bio-Mimetic Trajectory Generation of Robots via Artificial Potential Field With Time Base Generator
,”
IEEE Trans. Syst., Man, Cybern Part C Appl. Rev.
,
32
(
4
), pp.
426
439
.10.1109/TSMCC.2002.807273
5.
Jeon
,
J. W.
, and
Ha
,
Y. Y.
,
2000
, “
A Generalized Approach for the Acceleration and Deceleration of Industrial Robots and CNC Machine Tools
,”
IEEE Trans. Ind. Electron.
,
47
(
2
), pp.
133
139
.10.1109/41.824135
6.
Panahi
,
I. M. S.
, and
Toliyat
,
H. A.
,
2006
, “
An Efficient Processor-Based Online Generation of Time-Optimal Trajectories
,”
IEEE Trans. Control Syst. Technol.
,
14
(
5
), pp.
966
973
.10.1109/TCST.2006.876935
7.
Bobrow
,
J. E.
,
Dubowsky
,
S.
, and
Gibson
,
J. S.
,
1985
, “
Time-Optimal Control of Robotic Manipulators Along Specified Paths
,”
Int. J. Rob. Res.
,
4
, pp.
3
17
.10.1177/027836498500400301
8.
Ahn
,
K. T.
,
Cho
,
J. S.
, and
Chung
,
W. K.
,
2006
, “
Discrete Trajectory Formation in Comparison With the Analytical Method for Smooth Movements
,” Proceedings of
IEEE
International Conferernce on Industrial Electronics Control and Instrumentation, pp.
4462
4467
.10.1109/IECON.2006.347798
9.
Macfarlane
,
S.
, and
Croft
,
E. A.
,
2003
, “
Jerk-Bounded Manipulator Trajectory Planning: Design for Real-Time Application
,”
IEEE Trans. Rob. Autom.
,
19
(
1
), pp.
42
52
.10.1109/TRA.2002.807548
10.
Schlemmer
,
M.
, and
Agrawal
,
S. K.
,
2002
, “
A Computational Approach for Time-Optimal Planning of High-Rise Elevators
,”
IEEE Trans. Control Syst. Technol.
,
10
(
1
), pp.
105
111
.10.1109/87.974343
11.
Fu
,
K. S.
,
Gonzalez
,
R. C.
, and
Lee
,
C. S. G.
,
1987
,
Robotics: Control, Sensing, Vision and Intelligence
,
McGraw-Hill
,
New York
.
12.
Nam
,
S.-H.
, and
Yang
,
M.-Y.
,
2004
, “
A Study on a Generalized Parametric Interpolator With Real-Time Jerk-Limited Acceleration
,”
Comput.-Aided Des.
,
36
(
1
), pp.
27
36
.10.1016/S0010-4485(03)00066-6
13.
Nguyen
,
K. D.
,
Chen
,
I.-M.
, and
Ng
,
T.-C.
,
2007
, “
Planning Algorithms for S-Curve Trajectories
,” Proceedings of
IEEE
International Conference on Advanced Intelligent Mechatronics, pp.
1
6
.10.1109/AIM.2007.4412440
14.
Lambreshts
,
P.
,
Boerlage
,
M.
, and
Steinbuch
,
M.
,
2005
, “
Trajectory Planning and Feedforward Design for Electromechanical Motion Systems
,”
Control Eng. Pract.
,
13
, pp.
145
157
.10.1016/j.conengprac.2004.02.010
15.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
,
2001
, “
High Speed CNC System Design, Part I: Jerk Limited Trafectory Generation and Quintic Spline Interpolation
,”
Int. J. Mach. Tools Manuf.
,
41
, pp.
1323
1345
.10.1016/S0890-6955(01)00002-5
16.
Ahn
,
K. T.
,
Chung
,
W. K.
, and
Youm
,
Y.
,
2004
, “
Zero States Polynomial-Like Trahectory(ZSPOT) Generation
,” Proceedings of International Conference on the Advanced Mechatronics, pp.
120
125
.
17.
Khalsa
,
D. S.
,
1990
, “
High Performance Motion Control Trajectory Commands Based on the Convolution Integral and Digital Filtering
,” Proceedings of International Conference on Intelligent Motion, pp.
54
61
.
18.
Park
,
H. A.
,
Ali
,
M. A.
, and
Lee
,
C. S. G.
,
2010
, “
Convolution-Sum-Based Generation of Walking Patterns for Uneven Terrains
,” Proceedings of
IEEE
International Conference on Humanoid Robots, pp.
455
460
.10.1109/ICHR.2010.5686293
19.
Kim
,
J.-H.
,
2007
, “
Walking Pattern Generation of a Biped Walking Robot Using Convolution Sum
,” Proceedings of
IEEE
International Conference on Humanoid Robotics, pp.
539
544
.10.1109/ICHR.2007.4813923
20.
Su
,
K.-H.
,
Hu
,
C.-K.
, and
Cheng
,
M.-Y.
,
2006
, “
Design and Implementation of an FPGA-Based Motion Command Generation Chip
,” Proceedings of
IEEE
International Conference on Systems, Man, and Cybernetics, pp.
5030
5035
.10.1109/ICSMC.2006.385105
You do not currently have access to this content.