The effects caused by the cylinder wall temperature variations are nontrivial in advanced combustion mode engine control, particularly in cold-start processes and transients when the combustion mode switches from one to another. Being affected by the engine coolant and operating conditions on a cycle-by-cycle basis, cylinder wall temperature is difficult to be directly measured, and it is typically viewed as an unknown disturbance or estimated as a quasi-static parameter. However, such treatments of the cylinder wall temperature may not be sufficient in sophisticated control of combustion processes. This paper aims to estimate the cylinder wall temperature, on a cycle-by-cycle basis, through cylinder pressure signals in diesel engines. In the proposed methods, the cylinder wall temperature is modeled as a disturbance in the in-cylinder pressure dynamics. Thus, the wall temperature in each cylinder can be estimated, on a cycle-by-cycle basis, by the disturbance observer methods in finite crankshaft angles. Furthermore, to reduce the cylinder wall temperature estimation errors caused by the high-frequency noises in the cylinder pressure signals, a robust disturbance observer is proposed and compared with a typical design method. Through GT-Power engine model simulations and engine experimental results, the observer effectiveness, noise attenuation properties, and applications on a multicylinder diesel engine are evaluated.

References

References
1.
Yan
,
F.
, and
Wang
,
J.
,
2009
, “
Enabling Air-Path Systems for Homogeneous Charge Compression Ignition (HCCI) Engine Transient Control
,”
Proceedings of the ASME Dynamic Systems and Control Conference
.
2.
Yan
,
F.
, and
Wang
,
J.
,
2012
, “
Design and Robustness Analysis of Discrete Observers for Diesel Engine In-Cylinder Oxygen Mass Fraction Cycle-by-Cycle Estimation
,”
IEEE Trans. Control Syst. Technol.
,
20
(
1
), pp.
72
83
.10.1109/TCST.2010.2104151
3.
Flowers
,
D. L.
,
Aceves
,
S. M.
,
Westbrook
,
C. K.
,
Smith
,
J. R.
, and
Dibble
,
R. W.
,
1999
, “
Sensitivity of Natural Gas HCCI Combustion to Fuel and Operating Parameters Using Detailed Kinetic Modeling
,”
AES
, Vol.
39
, pp.
465
473
.
4.
Thring
,
R. H.
,
1989
, “
Homogeneous-Charge Compression Ignition Engine
,” SAE Paper No. 892068.
5.
Chiang
,
C.-J.
,
Stefanopoulou
,
A. G.
, and
Jankovic
,
M.
,
2007
, “
Nonlinear Observer-Based Control of Load Transitions in Homogeneous Charge Compression Ignition Engines
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
438
448
.10.1109/TCST.2007.894637
6.
Chiang
,
C.
, and
Stefanopoulou
,
A. G.
,
2007
, “
Stability Analysis in Homogeneous Charge Compression Ignition (HCCI) Engines With High Dilution
,”
IEEE Trans. Control Syst. Technol.
,
15
(
2
), pp.
209
219
.
7.
Cook
,
J. A.
,
Sun
,
J
,
Buckland
,
J. H.
,
Kolmanovsky
,
I. V.
,
Peng
,
H.
, and
Grizzle
,
J. W.
,
2006
, “
Automotive Powertrain Control—A Survey
,”
Asian J. Control
,
8
(
3
), pp.
237
260
.10.1111/j.1934-6093.2006.tb00275.x
8.
Wang
,
J.
,
2008
, “
Hybrid Robust Air-Path Control for Diesel Engines Operating Conventional and Low Temperature Combustion Modes
,”
IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1138
1151
.10.1109/TCST.2008.917227
9.
Chang
,
K.
,
Lavoie
,
G. A.
,
Babajimopoulos
,
A.
,
Filipi
,
Z. S.
, and
Assanis
,
N.
,
2007
, “
Control of a Multi-Cylinder HCCI Engine During Transient Operation by Modulating Residual Gas Fraction to Compensate for Wall Temperature Effects
,” SAE Paper No. 2007-01-0204.
10.
Wilhelmsson
,
C.
,
Vressner
,
A.
,
Tunestal
,
P.
,
Johansson
,
B.
,
Sarner
,
G.
, and
Alden
,
M.
,
2005
, “
Combustion Chamber Wall Temperature Measurement and Modeling During Transient HCCI Operation
,” SAE Paper No. 2005-01-3731.
11.
Giakoumis
,
E. G.
,
2007
, “
Cylinder Wall Insulation Effects on the First- and Second-Law Balances of a Turbocharged Diesel Engine Operating Under Transient Load Conditions
,”
Energy Convers. Manage.
,
48
, pp.
2925
2933
.10.1016/j.enconman.2007.07.013
12.
Brunt
,
M. F. J.
, and
Rai
,
H.
,
1998
, “
The Calculation of Heat Release Energy From Engine Cylinder Pressure Data
,” SAE Paper No. 981052.
13.
Grimm
,
B. M.
, and
Johnson
,
R. T.
,
1990
, “
Review of Simple Heat Release Computations
,” SAE Paper No. 900445.
14.
Chen
,
W. H.
,
2003
, “
Nonlinear Disturbance Observer-Enhanced Dynamic Inversion Control of Missiles
,”
J. Guid. Control Dyn.
,
26
(
1
), pp.
161
166
.10.2514/2.5027
15.
Killingsworth
,
N. J.
,
Aceves
,
S. M.
,
Flowers
,
D. L.
, and
Krstic
,
M.
,
2006
, “
A Simple HCCI Engine Model for Control
,”
Proceedings of the 2006 IEEE International Conference on Control Applications
.
16.
Chen
,
X.
,
Su
,
C. Y.
, and
Fukuda
,
T.
,
2004
, “
A Nonlinear Disturbance Observer for Multivariable Systems and Its Application to Magnetic Bearing Systems
,”
IEEE Trans. Control Syst. Technol.
,
12
(
4
), pp.
569
577
.10.1109/TCST.2004.825135
17.
Shaver
,
G. M.
,
2009
, “
Physics-Based Modeling and Control of Residual-Affected HCCI Engines
,”
ASME J. Dyn. Syst., Meas., Control
,
131
(
2
), 021002-12.10.1115/1.3023125
18.
Jung
,
M.
, and
Glover
,
K.
,
2006
, “
Calibratable Linear Parameter-Varying Control of a Turbocharged Diesel Engine
,”
IEEE Trans. Control Syst. Technol.
,
14
(
1
), pp.
45
62
.10.1109/TCST.2005.860513
19.
Plianos
,
A.
, and
Stobart
,
R.
,
2008
, “
Modeling and Control of Diesel Engines Equipped With a Two-Stage Turbo-System
,” SAE Paper No. 2008-01-1018.
20.
Do
,
K. D.
,
2010
, “
Control of Nonlinear Systems With Output Tracking Error Constraints and Its Application to Magnetic Bearings
,”
Int. J. Control
,
83
(
6
), pp.
1199
1216
.10.1080/00207171003664828
21.
Do
,
K. D.
, and
Pan
,
J.
,
2008
, “
Nonlinear Control of an Active Heave Compensation System
,”
Ocean Eng.
,
35
, pp.
558
571
.10.1016/j.oceaneng.2007.11.005
22.
Kim
,
K. S.
,
Rew
,
K. H.
, and
Kim
,
S.
,
2010
, “
Disturbance Observer for Estimating Higher Order Disturbances in Time Series Expansion
,”
IEEE Trans. Autom. Control
,
55
(
8
), pp.
1905
1911
.10.1109/TAC.2010.2049522
23.
Wang
,
J.
, and
Chadwell
,
C.
,
2008
, “
On the Advanced Air-Path Control for Multiple and Alternative Combustion Mode Engines
,” SAE Paper No. 2008-01-1730.
24.
Woschni
,
G.
,
1967
, “
Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,” SAE Transactions 76, SAE Technical Paper No. 670931.
25.
Rausen
,
D. J.
,
Stefanopoulou
,
A. G.
,
Kang
,
J. M.
,
Eng
,
J. A.
, and
Kuo
,
T. W.
,
2005
, “
A Mean-Value Model for Control of Homogeneous Charge Compression Ignition (HCCI) Engines
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
3
), pp.
355
362
.10.1115/1.1985439
26.
Lee
,
K.
,
Yoon
,
M.
, and
Sunwoo
,
M.
,
2008
, “
A Study on Pegging Methods for Noisy Cylinder Pressure Signal
,”
Control Eng. Pract.
,
16
, pp.
922
929
.10.1016/j.conengprac.2007.10.007
27.
Randolph
,
A. L.
,
1990
, “
Methods of Processing Cylinder-Pressure Transducer Signals to Maximize Data Accuracy
,” SAE Paper No. 900170.
You do not currently have access to this content.