The notion of essential orders was first introduced for the handling of decoupling problems. This paper focuses more on their interpretation, namely on the fact that each essential order corresponds to the highest time-differentiation order of a specific output appearing in the inverse model. During inverse modeling, this can in particular be useful for checking whether the specifications are appropriate to the structure of the given model. The aim of this paper is to define two procedures to graphically determine the essential orders directly from a bond graph (BG) model of a linear time-invariant system. Their usefulness is then justified in the context of a bond-graph based methodology for design problem analysis.

References

References
1.
Cremer
,
M.
,
1971
, “
A Precompensator of Minimal Order for Decoupling a Linear Multi-Variable System
,”
Int. J. Control
,
14
(
6
), pp.
1089
1103
.10.1080/00207177108932117
2.
Commault
,
C.
,
Descusse
,
J.
,
Dion
,
J. M.
,
Lafay
,
J. F.
, and
Malabre
,
M.
,
1986
, “
New Decoupling Invariants: The Essential Orders
,”
Int. J. Control
,
44
(
3
), pp.
689
700
.10.1080/00207178608933627
3.
Dion
,
J. M.
, and
Commault
,
C.
,
1982
, “
Smith-McMillan Factorizations at Infinity of Rational Matrix Functions and Their Control Interpretation
,”
Syst. Control Lett.
,
1
, pp.
312
320
.10.1016/S0167-6911(82)80029-7
4.
Vardulakis
,
A. I. G.
,
Limebeer
,
D. J. N.
, and
Karcanias
,
N.
,
1982
, “
Structure and Smith-MacMillan Form of a Rational Matrix at Infinity
,”
Int. J. Control
,
35
(
4
), pp.
701
725
.10.1080/00207178208922649
5.
Lafay
,
J. F.
,
Zagalak
,
P.
,
Herrera
,
A.
,
Icart
,
S.
,
1990
, “
Structural Results About the Interactor
,” Proceedings of the 29th
IEEE
Conference on Decision and Control, Vol.
2
, pp.
1048
1049
.10.1109/CDC.1990.203760
6.
Herrera
,
A. N.
, and
Lafay
,
J. F.
,
1993
, “
New Results About Morgan’s Problem
,”
IEEE Trans. Autom. Control
,
38
(
12
), pp.
1834
1838
.10.1109/9.250561
7.
Commault
,
C.
, and
Dion
,
J. M.
,
1982
, “
Structure at Infinity of Linear Multivariable Systems: A Geometric Approach
,”
IEEE Trans. Autom. Control
,
27
(
3
), pp.
693
696
.10.1109/TAC.1982.1102999
8.
Descusse
,
J.
,
Lafay
,
J. F.
, and
Malabre
,
M.
,
1985
, “
Solution of the Static-State Feedback Decoupling Problem for Linear Systems With Two Outputs
,”
IEEE Trans. Autom. Control
,
30
(
9
), pp.
914
918
.10.1109/TAC.1985.1104089
9.
Descusse
,
J.
,
Lafay
,
J. F.
, and
Malabre
,
M.
,
1988
, “
Solution to Morgan Problem
,”
IEEE Trans. Autom. Control
,
33
(
8
), pp.
732
739
.10.1109/9.1289
10.
van der Woude
,
J. W.
,
1991
, “
On the Structure at Infinity of a Structured System
,”
Linear Algebra Appl.
,
148
, pp.
145
169
.10.1016/0024-3795(91)90091-A
11.
Dion
,
J. M.
, and
Commault
,
C.
,
1993
, “
Feedback Decoupling of Structured Systems
,”
IEEE Trans. Autom. Control
,
38
(
7
), pp.
1132
1135
.10.1109/9.231471
12.
Karcanias
,
N.
,
Sagianos
,
E.
, and
Milonidis
,
E.
,
2005
, “
Structural Identification: The Computation of the Generic McMillan Degree
,” Proceedings of the 44th
IEEE
Conference on Decision and Control and European Control Conference, pp.
7222
7227
.10.1109/CDC.2005.1583326
13.
Karcanias
,
N.
,
Sagianos
,
E.
, and
Milonidis
,
E.
,
2007
, “
Structured Transfer Function Matrices and Integer Matrices: The Computation of the Generic McMillan Degree and Infinite Zero Structure
,”
Int. J. Control
,
80
(
9
), pp.
1404
1420
.10.1080/00207170701316632
14.
Reinschke
,
K. J.
,
1988
,
Multivariable Control: A Graph-Theoretic Approach (Lecture Notes in Control Information Sciences)
,
Springer-Verlag, Berlin
.
15.
Rahmani
,
A.
,
Sueur
,
C.
, and
Dauphin-Tanguy
,
G.
,
1992
, “
Formal Determination of Controllability/Observability Matrices for Multivariable Systems Modelled by Bond Graph
,”
Proceedings of IMACS/SICE International Symposium of Robotics, Mechatronics and Manufacturing Systems,
pp.
573
580
.
16.
Wu
,
S. T.
, and
Youcef-Toumi
,
K.
,
1995
, “
On Relative Degrees and Zero Dynamics From Physical System Modeling
,”
ASME J. Dyn. Sys., Meas., Control
,
117
(
2
), pp.
205
217
.10.1115/1.2835181
17.
Rahmani
,
A.
,
Sueur
,
C.
, and
Dauphin-Tanguy
,
G.
,
1996
, “
On the Infinite Structure of Systems Modelled by Bond Graph: Feedback Decoupling
,”
IEEE
International Conference on Systems, Man and Cybernetics, Vol.
3
, pp.
1617
1622
.10.1109/ICSMC.1996.565337
18.
Bertrand
,
J. M.
,
Sueur
,
C.
, and
Dauphin-Tanguy
,
G.
,
1997
, “
On the Finite and Infinite Structures of Bond-Graph Models
,” Proceedings of the
IEEE
Conference on Computational Cybernetics and Simulation, Vol.
3
, pp.
2472
2477
.10.1109/ICSMC.1997.635302
19.
Murota
,
K.
,
2000
,
Matrices and Matroids for Systems Analysis (Algorithms and Combinatorics)
, Vol.
20
,
Springer-Verlag, Berlin
.
20.
Brockett
,
R. W.
,
1965
, “
Poles, Zeros, and Feedback: State Space Interpretation
,”
IEEE Trans. Autom. Control
,
10
, pp.
129
135
.10.1109/TAC.1965.1098118
21.
Dauphin-Tanguy
,
G.
,
2000
,
Les Bond Graphs,
Hermès Sciences
,
Paris
.
22.
Descusse
,
J.
, and
Dion
,
J. M.
,
1982
, “
On the Structure at Infinity of Linear Square Decoupled Systems
,”
IEEE Trans. Autom. Control
,
27
(
4
), pp.
971
974
.10.1109/TAC.1982.1103041
23.
Gilbert
,
E. G.
,
1969
, “
Decoupling of Multivariable Systems by State Feedback
,”
SIAM J. Control
,
7
(
1
), pp.
50
63
.10.1137/0307004
24.
Ngwompo
,
R. F.
,
Scavarda
,
S.
, and
Thomasset
,
D.
,
1997
, “
Structural Inversibility and Minimal Inversion of Multivariable Linear Systems—A Bond Graph Approach
,”
Simul. Counc. Proc. Ser.
,
29
(
1
), p.
109
.
25.
Ngwompo
,
R. F.
, and
Scavarda
,
S.
,
1999
, “
Dimensioning Problems in System Design Using Bicausal Bond Graphs
,”
Simul. Pract. Theory
,
7
(
5–6
), pp.
577
587
.10.1016/S0928-4869(99)00013-0
26.
Ngwompo
,
R. F.
, and
Gawthrop
,
P. J.
1999
, “
Bond Graph-Based Simulation of Non-Linear Inverse Systems Using Physical Performance Specifications
,”
J. Franklin Inst.
,
336
(
8
), pp.
1225
1247
.10.1016/S0016-0032(99)00032-0
27.
Ngwompo
,
R. F.
,
Scavarda
,
S.
, and
Thomasset
,
D.
,
2001
, “
Physical Model-Based Inversion in Control Systems Design Using Bond Graph Representation, Part 1: Theory
,”
Proc. ImechEJ. Syst. Control Eng.
,
215
(
12
), pp.
95
103
.10.1243/0959651011540888
28.
Gawthrop
,
P. J.
,
1995
, “
Bicausal Bond Graphs
,”
Proceedings of the, International Conference on Bond Graph Modeling and Simulation (ICBGM’95),
pp.
83
88
.
29.
Gawthrop
,
P. J.
1997
, “
Bicausal Bond Graphs
,”
Proceedings of the International Conference on Bond Graph Modeling and Simulation (ICBGM’97),
pp.
97
102
.
30.
El Feki
,
M.
,
Di Loreto
,
M.
,
Bideaux
,
E.
,
Thomasset
,
D.
, and
Ngwompo
,
R. F.
,
2008
, “
Structural Properties of Inverse Models Represented by Bond Graph
,”
Proceedings of the 17th IFAC World Congress
, Vol.
17
, pp.
236
241
.
31.
El Feki
,
M.
,
Di Loreto
,
M.
,
Bideaux
,
E.
,
Thomasset
,
D.
, and
Marquis-Favre
,
W.
,
2008
, “
On the Role of Essential Orders on Feedback Decoupling and Model Inversion: Bond Graph Approach
,”
Proceedings of the European Conference of Modelling and Simulation (ECMS’08),
pp.
457
463
.
32.
Sueur
,
C.
, and
Dauphin-Tanguy
,
G.
,
1992
, “
Poles and Zeros of Multivariable Linear Systems: A Bond Graph Approach
,”
Bond Graph for Engineers,
Elsevier Science Publishers B.V.
,
Amsterdam
, pp.
211
228
.
33.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
,
2006
,
System Dynamics: Modeling and Simulation of Mechatronic Systems,
4th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
34.
Jardin
,
A.
,
El Feki
,
M.
,
Marquis-Favre
,
W.
,
Thomasset
,
D.
, and
Bideaux
,
E.
,
2008
, “
Use of Structural Analysis in a Bond Graph-Based Methodology for Sizing Mechatronic Systems
,”
Proceedings of the 7th edition of France-Japan, and 5th Europe-Asia Congress on Mechatronics
.
35.
Ngwompo
,
R. F.
,
Bideaux
,
E.
, and
Scavarda
,
S.
,
2005
, “
On the Role of Power Lines and Causal Paths in Bond Graph-Based Model Inversion
,”
Proceedings of the International Conference on Bond Graph Modeling and Simulation (ICBGM’05),
pp.
78
85
.
36.
Glumineau
,
A.
, and
Moog
,
C. H.
,
1992
, “
Nonlinear Morgan’s Problem: Case of (p + 1) Inputs and p Outputs
,”
IEEE Trans. Autom. Control
,
37
(
7
), pp.
1067
1072
.10.1109/9.148375
37.
Wonham
,
W. M.
,
1979
,
Linear Multivariable Control: A Geometric Approach,
Springer-Verlag
,
Berlin
.
38.
Eldem
,
V.
,
1994
, “
The Solution of Diagonal Decoupling Problem by Dynamic Output Feedback: The General Case
,”
IEEE Trans. Autom. Control
,
39
(
3
), pp.
503
511
.10.1109/9.280749
39.
Rahmani
,
A.
,
1993
, “
Etude structurelle des systèmes lineaires par l’approche Bond Graph
,”
Ph.D. thesis
,
Université des Sciences et Technologies de Lille
,
France
.
40.
Achir
,
A.
,
Junco
,
S.
,
Donaire
,
A.
, and
Sueur
,
C.
,
2006
, “
A Bond-Graph Method for Flatness-Based Dynamic Feedback Linearization Controller Synthesis: Application to a Current-Fed Induction Motor
,”
Proceedings of the European Conference of Modelling and Simulation (ECMS ‘06).
41.
Glumineau
,
A.
, and
Moog
,
C. H.
,
1989
, “
Essential Orders and the Non-Linear Decoupling Problem
,”
Int. J. Control
,
50
(
5
), pp.
1825
1834
.10.1080/00207178908953468
42.
Achir
,
A.
, and
Sueur
,
C.
,
2005
, “
Non Commutative Ring Bond Graphs: Application to Flatness
,”
Proceedings of the International Conference on Bond Graph Modeling and Simulation (ICBGM’05)
, Vol.
37
, pp.
59
64
.
43.
Lichiardopol
,
S.
, and
Sueur
,
C.
,
2006
, “
Decoupling of Non-Linear Bond-Graph Models
,” Proceedings of the
IEEE
International Conference on Control Applications, pp.
2237
2242
.10.1109/CACSD-CCA-ISIC.2006.4776988
You do not currently have access to this content.