In this paper, we consider the task of tracking a maneuvering target both with a single nonholonomic agent and a swarm of nonholonomic agents. In order to achieve the tracking task, a decentralized continuous-time control scheme, which combines artificial potentials and sliding mode control techniques, is developed via constructive analysis. The effectiveness of the proposed control scheme is established analytically and demonstrated via a set of simulation results.

References

References
1.
Astolfi
,
A.
,
1996
, “
Discontinuous Control of Nonholonomic Systems
,”
Syst. Control Lett.
,
27
, pp.
37
45
.10.1016/0167-6911(95)00041-0
2.
Balch
,
T.
, and
Arkin
,
R. C.
,
1998
, “
Behavior-Based Formation Control for Multirobot Teams
,”
IEEE Trans. Rob. Autom.
,
14
(
6
), pp.
926
939
.10.1109/70.736776
3.
Lawton
,
J. R. T.
,
Beard
,
R. W.
, and
Young
,
B. J.
,
2003
, “
A Decentralized Approach to Formation Maneuvers
,”
IEEE Trans. Rob. Autom.
,
19
(
6
), pp.
933
941
.10.1109/TRA.2003.819598
4.
Beard
,
R. W.
,
Lawton
,
J.
, and
Hadaegh
,
F. Y.
,
2001
, “
A Coordination Architecture for Spacecraft Formation Control
,”
IEEE Trans. Control Syst. Technol.
,
9
(
6
), pp.
777
790
.10.1109/87.960341
5.
Desai
,
J. P.
,
Ostrowski
,
J. P.
, and
Kumar
,
V.
,
2001
, “
Modeling and Control of Formations of Nonholonomic Mobile Robots
,”
IEEE Trans. Rob. Autom.
,
17
(
6
), pp.
905
908
.10.1109/70.976023
6.
Das
,
A. K.
,
Fierro
,
R.
,
Kumar
,
V.
,
Ostrowski
,
J. P.
,
Spletzer
,
J.
, and
Taylor
,
C. J.
,
2002
, “
A Vision-Based Formation Control Framework
,”
IEEE Trans. Rob. Autom.
,
18
(
5
), pp.
813
825
.10.1109/TRA.2002.803463
7.
Tanner
,
H. G.
,
Pappas
,
G. J.
, and
Kumar
,
V.
,
2004
, “
Leader-to-Formation Stability
,”
IEEE Trans. Rob. Autom.
,
20
(
3
), pp.
443
455
.10.1109/TRA.2004.825275
8.
Xie
,
F.
, and
Fierro
,
R.
,
2009
, “
Stabilization of Nonholonomic Robot Formations: A First-State Contractive Model Predictive Control Approach
,”
J. Comput. Inf. Technol.
,
17
(
1
), pp.
37
50
.10.2498/cit.1001188
9.
Ogren
,
P.
,
Fiorelli
,
E.
, and
Leonard
,
N. E.
,
2004
, “
Cooperative Control of Mobile Sensor Networks: Adaptive Gradient Climbing in a Distributed Environment
,”
IEEE Trans. Autom. Control
,
49
(
8
), pp.
1292
1302
.10.1109/TAC.2004.832203
10.
Fax
,
J. A.
, and
Murray
,
R. M.
,
2004
, “
Information Flow and Cooperative Control of Vehicle Formations
,”
IEEE Trans. Autom. Control
,
49
(
9
), pp.
1465
1476
.10.1109/TAC.2004.834433
11.
Jadbabaie
,
A.
,
Lin
,
J.
, and
Morse
,
A. S.
,
2003
, “
Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules
,”
IEEE Trans. Autom. Control
,
48
(
6
), pp.
988
1001
.10.1109/TAC.2003.812781
12.
Orqueda
,
O. A. A.
,
Zhang
,
X. T.
, and
Fierro
,
R.
,
2007
, “
An Output Feedback Nonlinear Decentralized Controller for Unmanned Vehicle Co-Ordination
,”
Int. J. Robust Nonlinear Control
,
17
(
12
), pp.
1106
1128
.10.1002/rnc.1167
13.
Dong
,
W.
, and
Farrell
,
J. A.
,
2009
, “
Decentralized Cooperative Control of Multiple Nonholonomic Dynamic Systems With Uncertainty
,”
Automatica
,
45
(
3
), pp.
706
710
.10.1016/j.automatica.2008.09.015
14.
Masoud
,
A. A.
,
1995
, “
A Boundary Value Problem Formulation of Pursuit-Evasion in a Known Stationary Environment: A Potential Field Approach
,”
IEEE International Conference on Robotics
, pp.
2734
2739
.
15.
Kim
,
D.-H.
, and
Oh
,
J.-H.
,
1998
, “
Globally Asymptotically Stable Tracking Control of Mobile Robots
,”
IEEE International Conference on Control Applications
, Vol.
2
, pp.
1297
1301
.
16.
Fierro
,
R.
, and
Lewis
,
F. L.
,
1995
, “
Control of a Nonholonomic Mobile Robot: Backstepping Kinematics Into Dynamics
,”
IEEE Conference on Decision and Control
, Vol.
4
, pp.
3805
3810
.
17.
Kube
,
R. C.
, and
Bonabeau
,
E.
,
2000
, “
Cooperative Transport by Ants and Robots
,”
Rob. Auton. Syst.
,
30
(
1/2
), pp.
85
101
.10.1016/S0921-8890(99)00066-4
18.
Yamaguchi
,
H.
,
1999
, “
A Cooperative Hunting Behavior by Mobile-Robot Troops
,”
Int. J. Robot. Res.
,
18
(
8
), pp.
931
940
.10.1177/02783649922066664
19.
Raffard
,
R. L.
,
Tomlin
,
C. J.
, and
Boyd
,
S. P.
,
2004
, “
Distributed Optimization for Cooperative Agents: Application to Formation Flight
,”
IEEE Conference on. Decision and Control
, Vol.
3
, pp.
2453
2459
.
20.
Gazi
,
V.
, and
Ordonez
,
R.
,
2007
, “
Target Tracking Using Artificial Potentials and Sliding Mode Control
,”
Int. J. Control
,
80
(
10
), pp.
1626
1635
.10.1080/00207170701455307
21.
Yao
,
J.
,
Ordonez
,
R.
, and
Gazi
,
V.
,
2007
, “
Swarm Tracking Using Artificial Potentials and Sliding Mode Control
,”
J. Dyn. Syst., Meas., Control
,
129
(
5
), pp.
749
754
.10.1115/1.2764511
22.
Saaj
,
C. M.
,
Lappas
,
V.
, and
Gazi
,
V.
,
2006
, “
Spacecraft Swarm Navigation and Control Using Artificial Potential Field and Sliding Mode Control
,”
IEEE International Conference on Industrial Technology
,
Mumbai, India
, pp.
2646
2652
.
23.
Lee
,
D.
,
2010
, “
Passive Decomposition and Control of Nonholonomic Mechanical Systems
,”
IEEE Trans. Rob.
,
26
(
6
), pp.
978
992
.10.1109/TRO.2010.2082430
24.
Defoort
,
M.
,
Floquet
,
T.
,
Kokosy
,
A.
, and
Perruquetti
,
W.
,
2008
, “
Sliding-Mode Formation Control for Cooperative Autonomous Mobile Robots
,”
IEEE Trans. Ind. Electron.
,
55
(
11
), pp.
3944
3953
.10.1109/TIE.2008.2002717
25.
Khatib
,
O.
,
1986
, “
Real-Time Obstacle Avoidance for Manipulators and Mobile Robots
,”
Int. J. Rob. Res.
,
5
(
1
), pp.
90
98
.10.1177/027836498600500106
26.
Rimon
,
E.
, and
Koditschek
,
D. E.
,
1992
, “
Exact Robot Navigation Using Artificial Potential Functions
,”
IEEE Trans. Rob. Autom.
,
8
(
5
), pp.
501
518
.10.1109/70.163777
27.
Utkin
,
V. I.
,
1992
,
Sliding Modes in Control and Optimization
,
Springer-Verlag
,
Berlin, Heidelberg
.
28.
Utkin
,
V. I.
,
Guldner
,
J.
, and
Shi
,
J.
,
1999
,
Sliding Mode Control in Electromechanical Systems
,
CRC Press
,
Boca Raton, FL
.
29.
Olfati-Saber
,
R.
,
2006
, “
Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory
,”
IEEE Trans. Autom. Control
,
51
(
3
), pp.
401
420
.10.1109/TAC.2005.864190
30.
Olfati-Saber
,
R.
, and
Murray
,
R. M.
,
2002
, “
Distributed Cooperative Control of Multiple Vehicle Formations Using Structural Potential Functions
,”
Proceedings of the IFAC World Congress
,
Barcelona, Spain
.
31.
Egerstedt
,
M.
, and
Hu
,
X.
,
2001
, “
Formation Constrained Multi-Agent Control
,”
IEEE Trans. Rob. Autom.
,
17
(
6
), pp.
947
951
.10.1109/70.976029
32.
Reif
,
J. H.
, and
Wang
,
H.
,
1999
, “
Social Potential Fields: A Distributed Behavioral Control for Autonomous Robots
,”
Rob. Auton. Syst.
,
27
, pp.
171
194
.10.1016/S0921-8890(99)00004-4
33.
Guldner
,
J.
, and
Utkin
,
V. I.
,
1994
, “
Stabilization of Nonholonomic Mobile Robots Using Lyapunov Functions for Navigation and Sliding Mode Control
,”
IEEE Conference on Decision and Control
,
Lake Buena Vista, FL
, pp.
2967
2972
.
34.
Guldner
,
J.
,
Utkin
,
V. I.
,
Hashimoto
,
H.
, and
Harashima
,
F.
,
1995
, “
Tracking Gradients of Artificial Potential Fields With Non-Holonomic Mobile Robots
,”
American Control Conference
,
Seattle, WA
, pp.
2803
2804
.
35.
Guldner
,
J.
, and
Utkin
,
V. I.
,
1996
, “
Tracking the Gradient of Artificial Potential Fields: Sliding Mode Control for Mobile Robots
,”
Int. J. Control
,
63
(
3
), pp.
417
432
.10.1080/00207179608921850
36.
Gazi
,
V.
, and
Passino
,
K. M.
,
2003
, “
Stability Analysis of Swarms
,”
IEEE Trans. Autom. Control
,
48
(
4
), pp.
692
697
.10.1109/TAC.2003.809765
37.
Gazi
,
V.
, and
Passino
,
K. M.
,
2004
, “
Stability Analysis of Social Foraging Swarms
,”
IEEE Trans. Syst., Man, Cybern., Part B
,
34
(
1
), pp.
539
557
.10.1109/TSMCB.2003.817077
38.
Gazi
,
V.
, and
Passino
,
K. M.
,
2004
, “
A Class of Attraction/Repulsion Functions for Stable Swarm Aggregations
,”
Int. J. Control
,
77
(
18
), pp.
1567
1579
.10.1080/00207170412331330021
39.
Gazi
,
V.
,
2005
, “
Swarm Aggregations Using Artificial Potentials and Sliding Mode Control
,”
IEEE Trans. Rob.
,
21
(
6
), pp.
1208
1214
.10.1109/TRO.2005.853487
40.
Gazi
,
V.
,
Fidan
,
B.
,
Hanay
,
Y. S.
, and
Köksal
,
M. İ.
,
2007
, “
Aggregation, Foraging, and Formation Control of Swarms With Non-Holonomic Agents Using Potential Functions and Sliding Mode Techniques
,”
Turk. J. Elec. Eng. & Comp. Sci.
,
15
(
2
), pp.
149
168
.
41.
Brockett
,
R. W.
,
1983
, “
Asymptotic Stability and Feedback Stabilization
,”
Differential Geometric Control Theory
,
R. S.
Millman
and
H. J.
Sussmann
, eds.,
Birkhauser
,
Boston, MA
, pp.
181
191
.
42.
Liu
,
S.
,
Tan
,
D.
, and
Liu
,
G.
,
2005
, “
Vision-Based Formation Control of Mobile Robots With Relative Motion States
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
, pp.
72
76
.
You do not currently have access to this content.