Although pneumatic actuators are widely used in industry, they have two major weaknesses—nonlinearities associated with compressibility of air and low energy efficiency. The former limits its applicability whenever accurate positioning is required, and the latter has a negative impact on users through increased energy costs. This paper addresses these issues with the aim of developing a widely applicable servo control strategy, which combines improved tracking accuracy and energy efficiency. A detailed actuator system model is linearized through nonlinear input–output feedback linearization, and the energy optimal velocity profile is derived. Simulation and experimental studies indicate that energy efficiency improvements of 3–7% are possible, while tracking accuracy can be ensured. The method is suitable for real-time implementation and is cost effective; it requires the implementation of an improved velocity profile, while hardware components do not need to be altered.

References

1.
McDonell
,
B. W.
, and
Bobrow
,
J. E.
, 1993, “
Adaptive Tracking Control of an Air Powered Robot Actuator
,”
ASME J. Dyn. Syst. Meas., Control
,
115
, pp.
427
433
.
2.
Ben-Dov
,
D.
, and
Salcudean
,
S. E.
, 1995, “
A Force-Controlled Pneumatic Actuator
,”
IEEE Trans. Rob. Autom.
,
11
, pp.
906
911
.
3.
Drakunov
,
S.
,
Hanchin
,
G. D.
,
Su
,
W. C.
, and
Ozguner
,
U.
, 1997, “
Nonlinear Control of a Rodless Pneumatic Servoactuator, or Sliding Modes Versus Coulomb Friction
,”
Automatica
,
33
, pp.
1401
1408
.
4.
Van Varseveld
,
R. B.
, and
Bone
,
G. M.
, 1997, “
Accurate Position Control of a Pneumatic Actuator Using on/off Solenoid Valves
,”
IEEE/ASME Trans. Mechatron.
,
2
, pp.
195
204
.
5.
Rao
,
Z. H.
, and
Bone
,
G. M.
, 2008, “
Nonlinear Modeling and Control of Servo Pneumatic Actuators
,”
IEEE Trans. Control Syst.
,
16
, pp.
562
569
.
6.
Richer
,
E.
, and
Hurmuzlu
,
Y.
, 2000, “
A High Performance Pneumatic Force Actuator System: Part II—Nonlinear Controller Design
,”
ASME J. Dyn. Syst., Meas., Control
,
122
, pp.
426
434
.
7.
Sacks
,
T.
, 1999, “
Switched Reluctance Motor Drives Energy-Saving Compressor
,”
Drives and Control
,
Kamtech, Surrey
,
UK
, p.
43
.
8.
Horner
,
M.
, 1998, “
Compressor Control
,”
Eng. Technol.
,
1
, pp.
24
25
.
9.
Energy Resources Center of the Illinois Industries of the Future, http://www.erc.uic.edu/iof/comp_air.html, viewed Mar. 20, 2011.
10.
Cai
,
M. L.
, and
Kagawa
,
T.
, 2001, “
Energy Consumption Assessment of Pneumatic Actuating Systems Including Compressor
,”
Proceedings of the IMechE Conference on Compressors and Their Systems
,
London
, pp.
381
390
.
11.
Al-Dakkan
,
K. A.
,
Goldfarb
,
M.
, and
Barth
,
E. J.
, 2003, “
Energy Saving Control for Pneumatic Servo Systems
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Vol.
1
, pp.
284
289
.
12.
Shen
,
X. G.
, and
Goldfarb
,
M.
, 2007, “
Energy Saving in Pneumatic Servo Control Utilizing Interchamber Cross-Flow
,”
ASME J. Dyn. Syst., Meas., Control
,
129
, pp.
303
311
.
13.
Yang
,
A. M.
,
Pu
,
J. S.
,
Wong
,
C. B.
, and
Moore
P. R.
, 2009, “
By-Pass Valve Control to Improve Energy Efficiency of Pneumatic Drive System
,”
Control Eng. Pract.
,
17
(
6
), pp.
623
628
.
14.
Wang
,
J.
,
Yang
,
L.
,
Luo
,
X.
,
Mangan
,
S.
, and
Derby
,
J. W.
, 2011, “
Mathematical Modelling Study of Scroll Air Motors and Energy Efficiency Analysis—Part I
,”
IEEE/ASME Trans. Mechatron.
,
16
(
1
), pp.
112
121
.
15.
Wang
,
J.
,
Luo
,
X.
,
Yang
L.
,
Shpanin
,
L.
,
Mangan
,
S.
, and
Derby
,
J. W.
, 2011, “
Mathematical Modelling Study of Scroll Air Motors and Energy Efficiency Analysis—Part II
,”
IEEE/ASME Trans. Mechatron.
,
16
(
1
), pp.
122
132
.
16.
Wang
,
J.
,
Wang
,
J. D.
, and
Liau
,
V. K.
, 2001, “
Energy Efficient Optimal Control for Pneumatic Actuator Systems
,”
J. Syst. Sci.
,
26
(
3
), pp.
109
123
.
17.
Wang
,
J.
,
Kotta
,
U.
, and
Ke
,
J.
, 2007, “
Tracking Control of Nonlinear Pneumatic Actuator Systems Using Static State Feedback Linearisation of Input/Output Map
,”
Proc. Est. Acad. Sci., Phys., Math.
,
56
, pp.
47
66
.
18.
Andersen
,
B. W.
, 1976,
The Analysis and Design of Pneumatic Systems
,
Robert
E.
Krieger Publishing Co., Inc.
,
New York
.
19.
Jia
,
N.
,
Wang
,
J.
,
Nuttall
,
K.
,
Wei.
,
J. L.
,
Xu
,
H. M.
,
Wyszynski
,
M.
,
Qiao
J.
, and
Richardson
,
M.
, 2007, “
HCCI Engine Modelling for Real-Time Implementation and Control Development
,”
IEEE/ASME Trans. Mechatron.
,
12
, pp.
581
589
.
20.
Armstrong-Helouvry
,
S.
,
Dupont
,
P.
, and
Canudas De Wit
,
C.
, 1994, “
A Survey of Model, Analysis Tool and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
, pp.
1083
1183
.
21.
Wei
,
J. L.
,
Wang
,
J.
, and
Wu
,
Q. H.
, 2007, “
Development of a Multi-Segment Coal Mill Model Using an Evolutionary Computation Technique
,”
IEEE Trans. Energy Convers.
,
22
, pp.
718
727
.
22.
Wang
,
J.
,
Wang
,
J. D.
,
Daw
,
N.
, and
Wu
,
Q. H.
, 2004, “
Identification of Pneumatic Cylinder Friction Parameters Using Genetic Algorithms
,”
IEEE/ASME Trans. Mechatron.
,
9
, pp.
100
107
.
23.
Lewis
,
F. L.
, and
Syrmos
,
V. L.
, 1995,
Optimal Control
,
John Wiley & Sons, Inc.
,
New York
.
24.
Ke
,
J.
,
Wang
,
J.
,
Yang
,
L.
,
Jia
,
N.
, and
Wu
,
Q. H.
, 2005, “
Energy Efficiency Analysis and Optimal Control of Servo Pneumatic Cylinders
,”
IEEE Conference on Control Applications
,
Canada
, August, 2005.
25.
Wang
,
J.
,
Pu
,
J.
, and
Moore
,
P. R.
, 1999, “
Accurate Position Control for Pneumatic Actuator Systems and Application to Food Packaging
,”
Control Eng. Pract.
,
7
, pp.
699
706
.
26.
Kells
,
A.
,
Best
,
M. C.
,
Gordon
,
T. J.
, and
Kelly
,
D.
, 2000, “
Optimized Control of an Advanced Hybrid Powertrain Based on Energy Efficiency Criteria
,”
Proceeding. of the Ricardo International Conference on Vehicle Systems Integration
,
A. V.
Smith
and
C.
Hickman
, eds.,
Brighton UK
,
London
, pp.
287
296
.
27.
Hancock
,
M. J.
,
Gordon
,
T. J.
,
Williams
,
R. A.
, and
Best
,
M. C.
, 2005, “
Comparison of Braking and Differential Control of Interactive Yaw-Sideslip Dynamics
,”
Proc. Inst. Mech. Eng, Part D (J. Automob. Eng.)
,
219
(
3
), pp.
309
327
.
You do not currently have access to this content.