In this work, a systematic method is introduced to determine the required accuracy of an automotive engine model used for real-time optimal control of coldstart hydrocarbon (HC) emissions. The engine model structure and development are briefly explained and the model predictions versus experimental results are presented. The control design problem is represented with a dynamic optimization formulation on the basis of the engine model and solved using the Pontryagin’s minimum principle (PMP). To relate the level of plant/model mismatch and the control performance degradation in practice, a sensitivity analysis using a computationally efficient method is employed. In this way, the sensitivities or the effects of small parameter variations on the optimal solution, which is the minimum of cumulative tailpipe HC emissions over the coldstart period, are calculated. There is a good agreement between the sensitivity analysis results and the experimental data. The sensitivities indicate the directions of the subsequent parameter estimation and model improvement tasks to enhance the control-relevant accuracy, and thus, the control performance. Furthermore, they provide some insights to simplify the engine model, which is critical for real-time implementation of the coldstart optimal control system.

References

References
1.
Henein
,
N. A.
,
Tagomori
,
M. K.
,
Yassine
,
M. K.
,
Asmus
,
T. W.
,
Thomas
,
C. P.
, and
Hartman
,
P. G.
, 1995, “
Cycle-by-Cycle Analysis of HC Emissions During Cold Start of Gasoline Engines
,” SAE Technical Paper No. 952402.
2.
Powell
,
B. K.
, 1979, “
A Dynamic Model for Automotive Engine Control Analysis
,”
Proceedings of IEEE Conference on Decision and Control
, pp.
120
126
.
3.
Dobner
,
D. J.
, 1983, “
Dynamic Engine Models for Control Development-Part I: Nonlinear and Linear Model Formulation
,”
Int. J. Veh. Des.
SP4
, pp.
54
74
.
4.
Moskwa
,
J. J.
, and
Hedrick
,
J. K.
, 1987, “
Automotive Engine Modeling for Real-Time Control Application
,”
Proceedings of American Control Conference
, pp.
341
346
.
5.
Cho
,
D.
, and
Hedrick
,
J. K.
, 1989, “
Automotive Powertrain Modelling for Control
,”
ASME J. Dyn. Syst., Meas., Control
,
111
, pp.
568
576
.
6.
Tunestal
,
P.
, and
Hedrick
,
J. K.
, 2001, “
Cylinder Air/Fuel Ratio Estimation Using Net Heat Release Data
,”
3rd IFAC Workshop on Advances in Automotive Control
.
7.
Balluchi
,
A.
,
Di Benedetto
,
M. D.
,
Pinello
,
C.
, and
Sangiovanni-Vincentelli
,
A. L.
, 2001, “
Mixed Models of Computation in the Design of Automotive Engine Control
,”
Proceedings of 40th IEEE Conference on Decision and Control
,
Orlando, Florida
(invited paper).
8.
Zavala
,
J. C.
,
GÄunther
,
D.
,
Sanketi
,
P. R.
,
Willcutts
,
M.
, and
Hedrick
,
J. K.
, 2006, “
Fuel Dynamics Model for Coldstart
,”
Proceedings of ASME IMECE 2006
.
9.
Sanketi
,
P. R.
,
Zavala
,
J. C.
, and
Hedrick
,
J. K.
, 2006, “
Automotive Engine Hybrid Modeling and Control for Reduction of Hydrocarbon Emissions
,”
Int. J. Control
,
79
(
5
), pp.
449
464
.
10.
Shen
,
H.
,
Shamim
,
T.
, and
Sengupta
,
S.
, 1999, “
An Investigation of Catalytic Converter Performances During Cold Starts
,” SAE Technical Paper No. 1999–01–3473.
11.
Chan
,
S. H.
, and
Hoang
,
D. L.
, 1999, “
Modeling of Catalytic Conversion of co/ch in Gasoline Exhaust at Engine Cold-Start
,” SAE Technical Paper No. 1999–01–0452.
12.
Ohsawa
,
K.
,
Baba
,
N.
, and
Kojima
,
S.
, 1998, “
Numerical Prediction of Transient Conversion Characteristics in a Three-Way Catalytic Converter
,” SAE Technical Paper No. 982556.
13.
Jones
,
J. P.
,
Roberts
,
J. B.
,
Pan
,
J.
, and
Jackson
,
R. A.
, 1999, “
Modeling the Transient Characteristics of a Three Way Catalyst
,” SAE Technical Paper No. 1999–01–0460.
14.
Jones
,
J. P.
,
Roberts
,
J.
, and
Bernard
,
P.
, 2000, “
A Simplified Model for the Dynamics of a Three-Way Catalytic Converter
,” SAE Technical Paper No. 2000–01–0652.
15.
Koltsakis
,
G. C.
, and
Tsinoglou
,
D. N.
, 2003, “
Thermal Response of Close-Coupled Catalysts During Light-Off
,” SAE Technical Paper No. 2003–01–1876.
16.
Fiengo
,
G.
,
Glielmo
,
L.
,
Santini
,
S.
, and
Serra
,
G.
, 2002, “
Control Oriented Models for TWC-Equipped Spark Ignition Engines During the Warm-Up Phase
,”
Proceedings of the American Control Conference
, pp.
1761
1766
.
17.
Soumelidis
,
M.
,
Stobart
,
R.
, and
Jackson
,
R.
, 2004, “
A Nonlinear Dynamic Model for Three-Way Catalyst Control and Diagnosis
,” SAE Technical Paper No. 2004–01–1831.
18.
Gonatas
,
E.
, and
Stobart
,
R.
, 2005, “
Prediction of Gas Concentrations in a Three-Way Catalyst for On-Board Diagnostic Applications
,” SAE Technical Paper No. 2005–01–0054.
19.
Brandt
,
E.
,
Wang
,
Y.
, and
Grizzle
,
J. W.
, 2000, “
Dynamic Modeling of Three-Way Catalyst for Si Engine Exhaust Emission Control
,”
IEEE Trans. Control Syst. Technol.
,
8
(
5
), pp.
767
776
.
20.
Shaw
,
B.
,
Fischer
,
G. D.
, and
Hedrick
,
J. K.
, 2002, “
A Simplified Coldstart Catalyst Thermal Model to Reduce Hydrocarbon Emissions
,”
Proceedings of 15th Triennial World Congress of the International Federation of Automatic Control
.
21.
Samenfink
,
W.
,
Albrodt
,
H.
,
Frank
,
M.
,
Gesk
,
M.
,
Melsheimer
,
A.
,
Thurso
,
J.
, and
Matt
,
M.
, 2003, “
Strategies to Reduce HC-Emissions During the Cold Starting of a Port Fuel Injected Gasoline Engine
,” SAE Technical Paper No. 2003–01–0627.
22.
Nishizawa
,
K.
,
Momoshima
,
S.
, and
Koga
,
M.
, 2000, “
Nissan’s Gasoline Sulev Technology
,” SAE Technical Paper No. 2000–01–1583.
23.
Tanaka
,
H.
,
Uenishi
,
M.
, and
Tan
,
I.
, 2001, “
An Intelligent Catalyst
,” SAE Technical Paper No. 2001–01–1301.
24.
Aquino
,
C. F.
, 1981, “
Transient A/F Control Characteristics of the 5 Liter Central Fuel Injection Engine
,” SAE Technical Paper No. 810494.
25.
Shaw
,
B.
, and
Hedrick
,
J. K.
, 2003, “
Closed-Loop Engine Coldstart Control to Reduce Hydrocarbon Emissions
,”
Proceedings of the American Control Conference
, pp.
1392
1397
.
26.
Souder
,
J.
, and
Hedrick
,
J. K.
, 2004, “
Adaptive Sliding Mode Control of Air-Fuel Ratio in Internal Combustion Engines
,”
Int. J. Robust Nonlinear Control
,
14
(
6
), pp.
525
541
.
27.
Sun
,
J.
, and
Sivashankar
,
N.
, 1999, “
Issues in Cold Start Emission Control for Automotive IC Engines
,”
Proceedings of the American Control Conference
, pp.
1372
1376
.
28.
Tseng
,
T. C.
, and
Cheng
,
W. K.
, 1999, “
An Adaptive Air/Fuel Ratio Controller for Si Engine Throttle Transients
,” SAE Technical Paper No. 1999–01–0552.
29.
Sanketi
,
P. R.
,
Zavala
,
J. C.
, and
Hedrick
,
J. K.
, 2005, “
Dynamic Surface Control of Engine Exhaust Hydrocarbons and Catalyst Temperature for Reduced Coldstart Emissions
,”
Proceedings of International Federation of Automatic Control (IFAC) Conference
.
30.
Tunestal
,
P.
,
Wilcutts
,
M.
,
Lee
,
A. T.
, and
Hedrick
,
J. K.
, 1999, “
In-Cylinder Measurement for Engine Cold-Start Control
,”
Proceedings of the IEEE International Conference on Control Applications
, pp.
460
464
.
31.
Lee
,
A. T.
,
Wilcutts
,
M.
,
Tunestal
,
P.
, and
Hedrick
,
J. K.
, 2001, “
A Method of Lean Air-Fuel Ratio Control Using Combustion Pressure Measurement
,”
JSAE Rev.
,
22
, pp.
389
393
.
32.
Giorgetti
,
N.
,
Bemporad
,
A.
,
Kolmanovsky
,
I.
, and
Hrovat
,
D.
, 2005, “
Explicit Hybrid Optimal Control of Direct Injection Stratified Charge Engines
,”
Proceedings of the IEEE International Symposium on Industrial Electronics
.
33.
McNicol
,
A. C.
,
Figueroa-Rosas
,
H.
,
Brace
,
C. J.
,
Ward
,
M. C.
,
Watson
,
P.
, and
Ceen
,
R. V.
, 2004, “
Cold Start Emissions Optimisation Using an Expert Knowledge Based Calibration Methodology
,” SAE Technical Paper No. 2004-01-0139.
34.
Fiengo
,
G.
,
Glielmo
,
L.
,
Santini
,
S.
, and
Serra
,
G.
, 2002, “
Control of the Exhaust Gas Emissions During the Warm-Up Process of a TWC-Equipped Si Engine
,”
15th IFAC World Congress
,
Barcelona, Spain
.
35.
Sanketi
,
P. R.
,
Azad
,
N. L.
,
Zavala
,
J. C.
, and
Hedrick
,
J. K.
, 2008, “
An Optimal Controller Formulation Via Convex Relation for Automotive Coldstart Hydrocarbon Reduction
,”
9th International Symposium on Advanced Vehicle Control
.
36.
Sage
,
A. P.
, 1968,
Optimum Systems Control
,
Prentice-Hall, Inc
,
Englewood Cliffs, New Jersey
.
37.
Kirk
,
D. E.
, 1970,
Optimal Control Theory: An Introduction
,
Prentice-Hall, Inc
,
Englewood Cliffs, New Jersey
.
38.
Zavala
,
J. C.
,
Sanketi
,
P. R.
,
Wilcutts
,
M.
,
Kaga
,
T.
, and
Hedrick
,
J. K.
, 2007, “
Simplified Models of Engine HC Emissions, Exhaust Temperature and Catalyst Temperature for Automotive Coldstart
,”
Proceedings of International Federation of Automatic Control (IFAC)
,
Workshop on Advances in Automotive Control
,
California
.
39.
Evers
,
A. H.
, 1980, “
Sensitivity Analysis in Dynamic Optimization
,”
J. Optim. Theory Appl.
,
32
(
1
), pp.
17
37
.
40.
Sanketi
,
P. R.
, 2009, “
Coldstart Modeling and Optimal Control Design for Automotive Si Engines
,” Ph.D. thesis, University of California, Berkeley.
41.
Sanketi
,
P. R.
,
Zavala
,
J. C.
,
Wilcutts
,
M.
,
Kaga
,
T.
, and
Hedrick
,
J. K.
, 2007, “
MIMO Control for Automotive Coldstart
,”
Proceedings of International Federation of Automatic Control (IFAC)
, Workshop on Advances in Automotive Control,
California
.
42.
Sanketi
,
P. R.
,
Zavala
,
J. C.
,
Hedrick
,
J. K.
,
Wilcutts
,
M.
, and
Kaga
,
T.
, 2006, “
A Simplified Catalytic Converter Model for Automotive Coldstart Applications With Adaptive Parameter Fitting
,”
8th International Symposium on Advanced Vehicle Control
.
43.
Zavala
,
J. C.
, 2007, “
Engine Modeling and Control for Minimization of Hydrocarbon Coldstart Emissions in Si Engine
,” Ph.D. thesis, University of California, Berkeley.
You do not currently have access to this content.