A distributed supervisory controller is proposed to achieve battery component swapping modularity (CSM) for a plug-in hybrid electric vehicle (PHEV). The CSM permits the designer to distribute a part of the supervisory controller to the battery module such that the PHEV can use a range of batteries while providing corresponding optimal fuel economy. A novel feedback-based controller for the charge sustaining mode is proposed to facilitate distributed controller design for battery CSM. The method based on sensitivity analysis of the control signals with respect to the battery hardware parameter is introduced to define the controller distribution architecture. The distributed controller gains are obtained by solving a bilevel optimization problem using the collaborative optimization and the augmented Lagrangian decomposition methods. The simulation results demonstrate that the proposed distributed controller can achieve battery CSM without compromising fuel economy compared to the centralized control case.

References

References
1.
Pesaran
,
A.A.
,
Markel
,
T.
,
Tataria
,
H. S.
, and
Howell
,
D.
, 2009, “
Battery Requirements for Plug-In Hybrid Electric Vehicles—Analysis and Rationale
,” Conference Paper, NREL/CP-540-42240, pp. 1–12.
2.
Markel
,
T.
, and
Simpson
,
A.
, 2006, “
Plug-In Hybrid Electric Vehicle Energy Storage System Design
,” Conference Paper, NREL/CP-540-39614, pp. 1–9.
3.
Michelsen
,
A. G.
, and
Stoustrup
,
J.
, 2010, “
High Level Model Predictive Control for Plug-and-Play Process Control With Stability Guaranty
,”
Proceedings of the 49th IEEE Conference on Decision and Control
, pp. 2456–2461.
4.
Bendtsen
,
J.
,
Trangbaek
,
K.
, and
Stoustrup
,
J.
, 2010, “
Hierarchical Model Predictive Control for Resource Distribution
,”
49th IEEE Conference on Decision and Control
, pp. 2468–2473.
5.
Feng-Li
,
L.
,
Moyne
,
J.
, and
Tilbury
,
D.
, 2002, “
Network Design Consideration for Distributed Control Systems
,”
IEEE Trans. Control Syst. Technol.
,
10
(
2
), pp.
297
307
.
6.
Zhang
,
W.
, 2001, “
Stability of Networked Control Systems
,”
IEEE Control Syst. Mag.
,
21
(
1
), pp.
84
99
.
7.
Hespanha
,
J. P.
,
Naghshtabrizi
,
P.
, and
Xu
,
Y.
, 2007, “
A Survey of Recent Results in Networked Control Systems
,”
Proc. IEEE
,
95
(
1
), pp.
138
172
.
8.
Yook
,
J. K.
,
Tilbury
,
D. M.
, and
Soparkar
,
N. R.
, 2002, “
Trading Computation for Bandwidth: Reducing Communication in Distributed Control Systems Using State Estimators
,”
IEEE Trans. Control Syst. Technol.
,
10
(
4
), pp.
503
518
.
9.
Warneke
,
B. A.
, and
Pister
,
K. S. J.
, 2002, “
Exploring the Limits of System Integration With Smart Dust
,” ASME International Mechanical Engineering Congress and Exposition, pp. 621–625
10.
Li
,
S.
,
Cakmakci
,
M.
,
Kolmanovsky
,
I. V.
, and
Ulsoy
,
A. G.
, 2009, “
Throttle Actuator Swapping Modularity Design for Idle Speed Control
,”
Proceedings of American Control Conference
, pp. 2702–2707.
11.
Cakmakci
,
M.
, and
Ulsoy
,
A. G.
, 2009, “
Improving Component-Swapping Modularity Using Bidirectional Communication in Networked Control System
,”
IEEE/ASME Trans. Mechatron.
,
14
(
3
), pp.
307
316
.
12.
Cakmakcı
,
M.
, and
Ulsoy
,
A. G.
, 2009, “
Modular Discrete Optimal Mimo Controller for a Vct Engine
,”
Proceedings of American Control Conference
, pp.
1359
1364
.
13.
Li
,
S.
,
Kolmanovsky
,
I. V.
, and
Ulsoy
,
A. G.
, 2010, “
Direct Optimal Distributed Controller Design for Component Swapping Modularity With Application to Isc
,”
Proceedings of American Control Conference
pp. 5368–5373.
14.
Alexandrov
,
N. M.
, and
Lewis
,
R. M.
, 2002, “
Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design
,”
AIAA J.
,
40
(
2
), pp.
301
309
.
15.
Zadeh
,
P.
,
Toropov
,
V.
, and
Wood
,
A.
, 2009, “
Metamodel-Based Collaborative Optimization Framework
,”
Struct. Multidiscip. Optim.
,
38
(
2
), pp.
103
115
.
16.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
, 2007, “
An Augmented Lagrangian Decomposition Method for Quasi-Separable Problems in Mdo
,”
Struct. Multidiscip. Optim.
,
34
(
3
), pp.
211
227
.
17.
Demiguel
,
V.
, and
Murray
,
W.
, 2006, “
A Local Convergence Analysis of Bilevel Decomposition Algorithms
,”
Optim. Eng.
,
7
(
2
), pp.
99
133
.
18.
Wirasingha
,
S. G.
, and
Emadi
,
A.
, 2011, “
Classification and Review of Control Strategies for Plug-In Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
60
(
1
), pp.
111
122
.
19.
Jalil
,
N.
,
Kheir
,
N. A.
, and
Salman
,
M.
, 1997, “
A Rule-Based Energy Management Strategy for a Series Hybrid Vehicle
,”
Proceedings of the American Control Conference
, pp. 689–693
20.
Barsali
,
S.
,
Miulli
,
C.
, and
Possenti
,
A.
, 2004, “
A Control Strategy to Minimize Fuel Consumption of Series Hybrid Electric Vehicles
,”
IEEE Trans. Energy Convers.
,
19
(
1
), pp.
187
195
.
21.
Jong-Seob
,
W.
,
Langari
,
R.
, and
Ehsani
,
M.
, 2005, “
An Energy Management and Charge Sustaining Strategy for a Parallel Hybrid Vehicle With Cvt
,”
IEEE Trans. Control Syst. Technol.
,
13
(
2
), pp.
313
320
.
22.
Banvait
,
H.
,
Anwar
,
S.
, and
Chen
,
Y.
, 2009, “
A Rule-Based Energy Management Strategy for Plug-In Hybrid Electric Vehicle (PHEV)
,”
Proceedings of American Control Conference
, pp. 3938–3943.
23.
Paganelli
,
G.
,
Delprat
,
S.
,
Guerra
,
T. M.
,
Rimaux
,
J.
, and
Santin
,
J. J.
, 2002, “
Equivalent Consumption Minimization Strategy for Parallel Hybrid Powertrains
,” IEEE 55th Vehicular Technology Conference, pp. 2076–2081.
24.
Sciarretta
,
A.
,
Back
,
M.
, and
Guzzella
,
L.
, 2004, “
Optimal Control of Parallel Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
12
(
3
), pp.
352
363
.
25.
Musardo
,
C.
,
Rizzoni
,
G.
, and
Staccia
,
B.
, 2005, “
A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management
,”
Eur. J. Control
,
11
(
4-5
), pp.
1816
1823
.
26.
Jinming
,
L.
, and
Huei
,
P.
, 2008, “
Modeling and Control of a Power-Split Hybrid Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1242
1251
.
27.
Chan-Chiao
,
L.
,
Huei
,
P.
,
Grizzle
,
J. W.
, and
Jun-Mo
,
K.
, 2003, “
Power Management Strategy for a Parallel Hybrid Electric Truck
,”
IEEE Trans. Control Syst. Technol.
,
11
(
6
), pp.
839
849
.
28.
Tate
,
E. D.
, Jr.
,
Grizzle
,
J. W.
, and
Peng
,
H.
, 2008, “
Shortest Path Stochastic Control for Hybrid Electric Vehicles
,”
Int. J. Robust Nonlinear Control
,
18
(
14
), pp.
1409
1429
.
29.
Jungme
,
P.
,
Zhihang
,
C.
,
Kiliaris
,
L.
,
Kuang
,
M. L.
,
Masrur
,
M. A.
,
Phillips
,
A. M.
, and
Murphey
,
Y. L.
, 2009, “
Intelligent Vehicle Power Control Based on Machine Learning of Optimal Control Parameters and Prediction of Road Type and Traffic Congestion
,”
IEEE Trans. Veh. Technol.
,
58
(
9
), pp.
4741
4756
.
30.
Konev
,
A.
,
Lezhnev
,
L.
, and
Kolmanovsky
,
I.
, 2006, “
Control Strategy Optimization for a Series Hybrid Vehicle
,” SAE Paper No. 2006-01-0663.
31.
Di Cairano
,
S.
,
Liang
,
W.
,
Kolmanovsky
,
I.
,
Kuang
,
M. L.
, and
Phillips
,
A. M.
, 2011, “
Engine Power Smoothing Energy Management Strategy for a Series Hybrid Electric Vehicle
,”
Proceedings of the American Control Conference
, pp. 2101–2106
32.
Markel
,
T.
,
Brooker
,
A.
,
Hendricks
,
T.
,
Johnson
,
V.
,
Kelly
,
K.
,
Kramer
,
B.
,
O’keefe
,
M.
,
Sprik
,
S.
, and
Wipke
,
K.
, 2002, “
advisor: A Systems Analysis Tool for Advanced Vehicle Modeling
,”
J. Power Sources
,
110
(
2
), pp.
255
266
.
33.
Liu
,
G. P.
, and
Patton
,
R. J.
, 1998,
Eigenstructure Assignment for Control System Design
,
John Wiley & Sons, Inc.
New York
.
34.
Office of the Federal Register (U.S.), 2011, “
Code of Federal Regulations 474.3
,” http://www.gpo.gov/fdsys/search/pagedetails.action?collectionCode=CFR&searchPath=Title+10%2FChapter+II&granuleId=CFR-2011-title10-vol3-sec474-3&packageId=CFR-2011-title10-vol3&oldPath=Title+10%2FChapter+II&fromPageDetails=true&collapse=false&ycord=0
35.
Avriel
,
M.
, 2003,
Nonlinear Programming: Analysis and Methods
,
Dover Publications
,
Mineola, New York
.
You do not currently have access to this content.