An adaptive general predictive control using optimally scheduled multiple models (OSMM-GPC) is presented for improving the load-following capability and economic profits of the system of parallel-coursing utility units with a header (PUUH). OSMM-GPC is a comprehensive control algorithm built on the distributed multiple-model control architecture. It is improved from general predictive control by two novel algorithms. One is the mixed fuzzy recursive least-squares (MFRLS) estimation and the other is the model optimally scheduling algorithm. The MFRLS mixes the local and global online estimations by weighting a dynamic multi-objective cost function on the membership feature of each sampling point. It provides better parameter estimation on the Takagi–Sugeno (TS) fuzzy model of a time-varying system than the local and global recursive least squares, thus, it is proper for building adaptive models for the OSMM-GPC. Based on high-precision adaptive models estimated by the MFRLS, the model optimally scheduling algorithm computes the regulating efficiencies of all control groups and then chooses the optimal one in charge of the multiple-variable general predictive control. Through the model scheduling at each operation point, considerable fuel consumption can be saved; meanwhile, a better control performance is achieved. Besides PUUH, the OSMM-GPC can also work for other distributed multiple-model control applications.

References

References
1.
Pan
,
L.
, and
Shen
,
J.
, 2010, “
A Hierarchical Economical Load Dispatch Based on Flow-Balanced Zones of Parallel Coursing Power Units With a Header
,”
Proceedings 53rd ISA POWID Symposium
,
Summerlin, NV
, Vol.
483
, pp.
410
418
.
2.
Warsono King
,
D. J.
,
Ozveren
,
C. S.
, and
Bradley
,
D. A.
, 2007, “
Economic Load Dispatch Optimization of Renewable Energy in Power System Using Genetic Algorithm
,”
IEEE Proc. Power Tech. Lausanne
,
1
, pp.
2174
2179
.
3.
Chiou
,
P. J.
, 2009, “
A Variable Scaling Hybrid Differential Evolution for Solving Large-Scale Power Dispatch Problems
,”
IET Gener. Transm. Distrib.
,
3
(
2
), pp.
154
163
.
4.
Majanne
,
Y.
, 2005, “
Model Predictive Pressure Control of Steam Networks
,”
Control Eng. Pract.
,
13
, pp.
1499
1505
.
5.
Luyben
,
W. L.
, 2004, “
Mathematical modeling and control of a multiboiler steam generation system
,”
Ind. Eng. Chem. Res.
,
43
(
8
), pp.
1839
1852
.
6.
White
,
D.
, 1999, “
Robust control of a steam header letdown system
,”
IEEE Canadian Conference on Electrical and Computer Engineering
,
2
, pp.
937
940
.
7.
Emoto
,
G.
,
Tsuda
,
A.
,
Takeshita
,
T.
,
Monical
,
M. T.
,
Nakagawa
,
S.
, and
Fujita
,
K.
, 1998, “
Integrated Large-Scale Multivariable Control and Real-Time Optimization of a Power Plant
,”
IEEE Proc. Control Applications
,
2
, pp.
1368
1372
.
8.
Clarke
,
D. W.
,
Mohtadi
,
C.
, and
Tuffs
,
P. S.
, 1987, “
General Predictive Control-Part II. Extension and Interpretations
,”
Automatica
,
23
(
2
), pp.
149
160
.
9.
Clarke
,
D. W.
,
Mosca
,
E.
, and
Scattolini
,
R.
, 1994, “
Robustness of an Adaptive Predictive Controller
,”
IEEE Trans. Autom. Control
,
39
(
5
), pp.
1052
1056
.
10.
Liu
,
X. J.
,
Guan
,
P.
, and
Chan
,
C. W.
, 2010, “
Nonlinear Multivariable Power Plant Coordinate Control by Constrained Predictive Scheme
,”
IEEE Tran. Control Syst. Technol.
,
18
(
5
), pp.
1116
1125
.
11.
Pan
,
L.
, and
Shen
,
J.
, 2010, “
Study of Approximate Distributed Dynamic Model of Multisource and Multi-Sink Steam Manifold System of Thermal Power Plant
,”
Chem. Eng. Commun.
,
197
(
2
), pp.
204
212
.
12.
Li
,
N.
,
Li
,
S. Y.
, and
Xi
,
Y. G.
, 2004, “
Multi-Model Predictive Control Based on the Takagi-Sugeno Fuzzy Models: A Case Study
,”
Inf. Sci.
,
165
, pp.
247
263
.
13.
Narendra
,
K. S.
,
Balakrisham
,
J.
, and
Ciliz
,
M. K.
, 1995, “
Adaption and Learning Using Multiple Models, Switching and Tuning
,”
IEEE Control Syst. Mag.
,
15
(
3
), pp.
37
51
.
14.
Prasad
,
G.
,
Swidenbank
,
E.
, and
Hogg
,
B. W.
, 1998, “
A Local Model Networks Based Multivariable Long-Range Predictive Control Strategy for Thermal Power Plants
,”
Automatica
,
34
(
10
), pp.
1185
1204
.
15.
Habbi
,
H.
,
Zelmat
,
M.
, and
Bouamama
,
B. O.
, 2003, “
A Dynamic Fuzzy Model for a Drum-Boiler-Turbine System
,”
Automatica
,
39
(
7
), pp.
1213
1219
.
16.
Kallapa
,
P.
, and
Ray
,
A.
, 2000, “
Fuzzy Wide-Range Control of Fossil Power Plants for Life Extension and Robust Performance
,”
Automatica
,
36
(
1
), pp.
69
82
.
17.
Pan
,
L.
,
Shen
,
J.
, and
Luh
,
P. B.
, 2010, “
A Mixed Fuzzy Recursive Least-Squares Estimation for Online Identification of Takagi-Sugeno Models
,”
Proceedings IEEE Conference on Progress in Informatics and Computing
,
Shanghai, CN
, Vol.
1
, pp.
326
330
.
18.
Babuška
,
R.
, and
Verbruggen
,
H. B.
, 1998, “
Identification of MIMO System by Input-Output TS Fuzzy Models
,”
Proceedings FUZZ-IEEE
,
Anchorage, AK
, Vol.
1
, pp.
657
662
.
19.
Abonyi
,
J.
,
Babuška
,
R.
, and
Szeifert
,
F.
, 2004, “
Modified Gath-Geva Fuzzy Clustering for Identification of Takagi-Sugeno Fuzzy Models
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
,
32
(
10
), pp.
612
621
.
20.
Gath
,
L.
, and
Geva
,
A.
, 1989, “
Unsupervised Optimal Fuzzy Clustering
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
7
, pp.
773
781
.
21.
Hadjili
,
M. L.
, and
Werta
,
V.
, 2002, “
Takagi-Sugeno Fuzzy Modeling Incorporating Input Variables Selection
,”
IEEE Trans. Fuzzy Syst.
,
10
(
6
), pp.
728
742
.
22.
Yen
,
J.
, and
Wang
,
L.
, 1998, “
Improving the Interpretability of TSK Fuzzy Models by Combined Local and Global Learning
,”
IEEE Trans. Fuzzy Syst.
,
6
(
4
), pp.
530
537
.
23.
Angelov
,
P. P.
, and
Filev
,
D. P.
, 2004, “
An Approach to Online Identification of Takagi-Sugeno Fuzzy Models
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
,
34
(
1
), pp.
484
498
.
24.
Johns
,
A. T.
, and
Warne
,
D. F.
, 2003,
IEE Power and Energy Series: Thermal Power Plant Simulation and Control
,
The Institution of Electrical Engineers
,
UK
, Vol.
43
, pp.
172
175
.
25.
Dimitri
,
P. B.
, 1999,
Nonlinear Programming
,
2nd ed.
,
Athena Scientific
,
Belmont, MA.
You do not currently have access to this content.