This paper investigates the semiglobal stabilization problem for nonholonomic mobile robots based on dynamic feedback with inputs saturation. A bounded, continuous, time-varying controller is presented such that the closed-loop system is semiglobally asymptotically stable. The systematic strategy combines finite-time control technique with the virtual-controller-tracked method, which is similar to the back-stepping procedure. First, the bound-constrained smooth controller is presented for the kinematic model. Second, the dynamic feedback controller is designed to make the generalized velocity converge to the prespecified kinematic (virtual) controller in a finite time. Furthermore, the rigorous proof is given for the stability analysis of the closed-loop system. In the mean time, the position and torque inputs of robots are proved to be bounded at any time. Finally, the simulation results show the effectiveness of the proposed control approach.

References

References
1.
Sussmann
,
H. J.
,
Sontag
,
E. D.
, and
Yang
,
Y.
, 1994, “
A General Result on the Stabilization of Linear Systems Using Bounded Controls
,”
IEEE Trans. Autom. Control
,
39
(
12
), pp.
2411
2425
.
2.
Teel
,
A. R.
, 1992, “
Global Stabilization and Restricted Tracking for Multiple Integrators With Bounded Controls
,”
Syst. Control Lett.
,
18
(
3
), pp.
165
171
.
3.
Lin
,
Z.
, 1998,“
Global Control of Linear Systems With Saturating Actuators
,”
Automatica
,
34
(
7
), pp.
897
905
.
4.
Zhou
,
B.
,
Lam
,
J.
,
Lin
,
Z.
, and
Duan
,
G. R.
, 2010, “
Global Stabilization and Restricted Tracking With Bounded Feedback for Multiple Oscillator Systems
,”
Syst. Control Lett.
,
59
, pp.
414
422
.
5.
Forni
,
F.
,
Galeani
,
S.
, and
Zaccarian
,
L.
, 2010, “
A Family of Global Stabilizers for Quasi-Optimal Control of Planar Linear Saturated Systems
,”
IEEE Trans. Autom. Control
,
55
(
5
), pp.
1175
1180
.
6.
Lin
,
Z.
,
Saberi
,
A.
, and
Stoorvogel
,
A. A.
, 1996, “
Semiglobal Stabilization of Linear Discrete-Time Systems Subject to Input Saturation via Linear Feedback-an ARE-Based Approach
,”
IEEE Trans. Autom. Control
,
41
(
8
), pp.
1203
1207
.
7.
Teel
,
A. R.
, 1994, “
Global Stabilizability and Observability Imply Semi-Global Stabilizability by Output Feedback
,”
Syst. Control Lett.
,
22
, pp.
313
325
.
8.
Hu
,
T.
,
Lin
,
Z.
, and
Shamash
,
Y.
, 2001, “
Semi-Global Stabilization With Guaranteed Regional Performance of Linear Systems Subject to Actuator Saturation
,”
Syst. Control Lett.
,
43
, pp.
203
210
.
9.
Lan
,
W.
, and
Huang
,
J.
, 2003, “
Semiglobal Stabilization and Output Regulation of Singular Linear Systems With Input Saturation
,”
IEEE Trans. Autom. Control
,
48
(
7
), pp.
1274
1280
.
10.
Zhou
,
B.
,
Duan
,
G. R.
, and
Lin
,
Z.
, 2011, “
A Parametric Periodic Lyapunov Equation With Application in Semi-Global Stabilization of Discrete-Time Periodic Systems Subject to Actuator Saturation
,”
Automatica
,
47
, pp.
316
325
.
11.
Brockett
,
R. W.
, 1983, “
Asymptotic Stability and Feedback Stabilization
,”
Differential Geometric Control Theory
,
R. W.
Brockett
,
R. S.
Millman
, and
H. J.
Sussmann
, eds.,
Birkhauser
,
Boston
, pp.
181
208
.
12.
Murray
,
R. M.
, and
Sastry
,
S. S.
, 1993, “
Nonholonomic Motion Planning: Steering Using Sinusoids
,”
IEEE Trans. Autom. Control
,
38
(
5
), pp.
700
716
.
13.
Tian
,
Y. P.
, and
Li
,
S.
, 2002, “
Exponential Stabilization of Nonholonomic Dynamic Systems by Smooth Time-Varying Control
,”
Automatica
,
38
(
7
), pp.
1139
1146
.
14.
Teel
,
A.
,
Murry
,
R.
, and
Walsh
,
G.
, 1992, “
Nonholonomic Control Systems: From Steering to Stabilization With Sinusoids
,”
Proceedings of the IEEE Conference on Decision Control
, pp.
1603
1609
.
15.
Astolfi
,
A.
, 1996, “
Discontinuous Control of Nonholonomic Systems
,”
Syst. Control Lett.
,
27
, pp.
37
45
.
16.
Bloch
,
A. M.
, and
Drakunov
,
S.
, 1995, “
Stabilization of a Nonholonomic Systems via Sliding Modes
,”
Proceedings of the IEEE Conference on Decision Control
, pp.
2961
2963
.
17.
Canudas de Wit
,
C.
, and
SZrdalen
,
O. J.
, 1992, “
Exponential Stabilization of Mobile Robots With Nonholonomic Constraints
,”
IEEE Trans. Autom. Control
,
37
(
11
), pp.
1791
1797
.
18.
Sordalen
,
O. J.
, and
Egeland
,
O.
, 1995, “
Exponential Stabilization of Nonholonomic Chained Systems
,”
IEEE Trans. Autom. Control
,
40
(
1
), pp.
35
49
.
19.
Soueres
,
P.
,
Balluchi
,
A.
, and
Bicchi
,
A.
, 2001, “
Optimal Feedback Control for Line Tracking With a Bounded-Curvature Vehicle
,”
Int. J. Control
,
74
(
10
), pp.
1009
1019
.
20.
Hussein
,
I. I.
, and
Bloch
,
A. M.
, 2008, “
Optimal Control of Underactuated Nonholonomic Mechanical Systems
,”
IEEE Trans. Autom. Control
,
53
(
3
), pp.
668
682
.
21.
Qu
,
Z.
,
Wang
,
J.
,
Plaisted
,
C. E.
, and
Hull
,
R. A.
, 2006, “
Global-Stabilizing Near-Optimal Control Design for Nonholonomic Chained Systems
,”
IEEE Trans. Autom. Control
,
51
(
9
), pp.
1440
1456
.
22.
Wang
,
C. L.
, 2008, “
Semiglobal Practical Stabilization of Nonholonomic Wheeled Mobile Robots With Saturated Inputs
,”
Automatica
,
44
, pp.
816
822
.
23.
Jiang
,
Z. P.
,
Lefeber
,
E.
, and
Nijmeijer
,
H.
, 2001, “
Saturated Stabilization and Tracking of a Nonholonomic Mobile Robot
,”
Syst. Control Lett.
,
42
, pp.
327
332
.
24.
Luo
,
J.
, and
Tsiotras
,
P.
, 2000, “
Control Design of Chained Form Systems With Bounded Inputs
,”
Syst. Control Lett.
,
39
, pp.
123
131
.
25.
Chen
,
H.
,
Ma
,
M. M.
,
Wang
,
H.
,
Liu
,
Z. Y.
, and
Cai
,
Z. X.
, 2009, “
Moving Horizon H∞ Tracking Control of Wheeled Mobile Robots With Actuator Saturation
,”
IEEE Trans. Control Syst. Technol.
,
17
(
2
), pp.
449
457
.
26.
Park
,
B. S.
,
Park
,
J. B.
, and
Choi
,
Y. H.
, 2011, “
Adaptive Formation Control of Electrically Driven Nonholonomic Mobile Robots With Limited Information
,”
IEEE Trans. Syst.
, Man, Cybern., Part B: Cybern,
41
(
4
), pp.
1061
1075
.
27.
Jiang
,
Z. P.
, and
Nijmeijer
,
H.
, 1999, “
A Recursive Technique for Tracking Control of Nonholonomic Systems in Chained Form
,”
IEEE Trans. Autom. Control
,
44
(
2
), pp.
265
279
.
28.
Kolmanovsky
,
I.
, and
McClamvoch
,
N. H.
, 1995, “
Developments in Nonholonomic Control Problems
,”
IEEE Control Syst. Mag.
,
15
, pp.
20
36
.
29.
Canudas de Wit
,
C.
,
Siciliano
,
B.
, and
Bastin
,
G.
, eds., 1996,
Theory of Robot Control
,
Springer
,
London
.
30.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
, 1998, “
Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators
,”
IEEE Trans. Autom. Control
,
43
, pp.
678
682
.
31.
M’Closkey
,
R. T.
, and
Murray
,
R. M.
, 1997, “
Exponential Stabilization of Driftless Nonlinear Control Systems Using Homogeneous Feedback
,”
IEEE Trans. Autom. Control
,
42
, pp.
614
628
.
32.
Hong
,
Y.
,
Huang
,
J.
, and
Xu
,
Y. S.
, 2001, “
On an Output Feedback Finite-Time Stabilization Problem
,”
IEEE Trans. Autom.Control
,
46
, pp.
305
309
.
You do not currently have access to this content.