In this paper, a recently introduced model-based method for precedent-free fault detection and isolation (FDI) is modified to deal with multiple input, multiple output (MIMO) systems and is applied to an automotive engine with exhaust gas recirculation (EGR) system. Using normal behavior data generated by a high fidelity engine simulation, the growing structure multiple model system (GSMMS) approach is used to construct dynamic models of normal behavior for the EGR system and its constituent subsystems. Using the GSMMS models as a foundation, anomalous behavior is detected whenever statistically significant departures of the most recent modeling residuals away from the modeling residuals displayed during normal behavior are observed. By reconnecting the anomaly detectors (ADs) to the constituent subsystems, EGR valve, cooler, and valve controller faults are isolated without the need for prior training using data corresponding to particular faulty system behaviors.

References

References
1.
Zheng
,
M.
,
Reader
,
G. T.
, and
Hawley
,
J. G.
, 2004, “
Diesel Engine Exhaust Gas Recirculation–A Review on Advanced and Novel Concepts
,”
Energy Convers. Manage.
,
45
(
6
), pp.
883
900
.
2.
Rizzoni
,
G.
, and
Min
,
P. S.
, 1991, “
Detection of Sensor Failures in Automotive Engines
,”
Veh. Technol., IEEE Trans.
,
40
(
2
), pp.
487
500
.
3.
Gertler
,
J.
, 1993, “
Model-Based On-Board Fault Detection and Diagnosis for Automotive Engines
,”
Control Eng. Pract.
,
1
(
1
), pp.
3
17
.
4.
Ceccarelli
,
R.
,
Canudas-de Wit
,
C.
,
Moulin
,
P.
, and
Sciarretta
,
A.
, 2009, “
Model-Based Adaptive Observers for Intake Leakage Detection in Diesel Engines
,”
American Control Conference, 2009, ACC ’09
, June 10–12, pp.
1128
1133
.
5.
Nyberg
,
M.
, and
Stutte
,
T.
, 2004, “
Model Based Diagnosis of the Air Path of an Automotive Diesel Engine
,”
Control Eng. Pract.
,
12
(
5
), pp.
513
525
.
6.
Kim
,
Y. W.
,
Rizzoni
,
G.
, and
Utkin
,
V.
, 1998, “
Automotive Engine Diagnosis and Control via Nonlinear Estimation
,”
Control Syst. Mag., IEEE
,
18
(
5
), pp.
84
99
.
7.
Capriglione
,
D.
,
Liguori
,
C.
,
Pianese
,
C.
, and
Pietrosanto
,
A.
, 2003, “
On-Line Sensor Fault Detection, Isolation, and Accommodation in Automotive Engines
,”
Instrum. Meas., IEEE Trans.
,
52
(
4
), pp.
1182
1189
.
8.
Dong
,
D. W.
,
Hopfield
,
J. J.
, and
Unnikrishnan
,
K. P.
, 1997, “
Neural Networks for Engine Fault Diagnostics
,”
Neural Networks for Signal Processing [1997] VII. Proceedings of the 1997 IEEE Workshop, Sept. 24–26
, pp.
636
644
.
9.
Kimmich
,
F.
,
Schwarte
,
A.
, and
Isermann
,
R.
, 2005, “
Fault Detection for Modern Diesel Engines Using Signal- and Process Model-Based Methods
,”
Control Eng. Pract.
,
13
(
2
), pp.
189
203
.
10.
Liu
,
J.
,
Djurdjanovic
,
D.
,
Marko
,
K.
, and
Ni
,
J.
, 2009, “
Growing Structure Multiple Model Systems for Anomaly Detection and Fault Diagnosis
,”
J. Dyn. Syst., Meas. Control
,
131
(
5
), p.
051001
.
11.
Kecman
,
V.
, 2001,
Learning and Soft Computing
,
MIT Press
,
Cambridge, MA
.
12.
Principe
,
J. C.
,
Wang
,
L.
, and
Motter
,
M. A.
, 1998, “
Local Dynamic Modeling With Self-Organizing Maps and Applications to Nonlinear System Identification and Control
,”
Proc. IEEE
,
86
(
11
),
2240
2258
.
13.
Takagi
,
T.
, and
Sugeno
,
M.
, 1985, “
Fuzzy Identification of Systems and Its Applications to Modeling and Control
,”
IEEE Trans. Syst., Man Cybern.
,
15
(
1
), pp.
116
132
.
14.
Lewis
,
F. K.
, and
Syrmos
,
V. L.
, 1995,
Optimal Control
,
2nd ed.
,
John Wiley & Sons
,
New York
.
15.
Tzafestas
,
S. G.
, and
Zikidis
,
K. C.
, 2001, “
NeuroFAST: On-Line Neuro-Fuzzy ART-Based Structure and Parameter Learning TSK Model
,”
IEEE Trans. Syst. Man, Cybern.
, Part B,
31
(
5
), pp.
797
802
.
16.
Carpenter
,
G. A.
,
Grossberg
,
S.
, and
Rosen
,
D. B.
, 1991, “
Fuzzy Art: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System
,”
Neural Netw.
,
4
, p.
759771
.
17.
Johansen
,
T. A.
, and
Foss
,
B. A.
, 1995, “
Identification of Non-Linear System Structure and Parameters Using Regime Decomposition
,”
Automatica
,
31
(
2
), pp.
321
326
.
18.
Kohonen
,
T.
, 1988,
Self-Organized Formation of Topologically Correct Feature Maps
,
MIT Press
,
Cambridge, MA
, pp.
509
521
.
19.
Barreto
,
G. A.
, and
Araujo
,
A. F. R.
, 2004, “
Identification and Control of Dynamical Systems Using the Self-Organizing Map
,”
IEEE Trans. Neural Netw.
,
15
(
5
), pp.
1244
1259
.
20.
Ge
,
M.
,
Chin
,
M. S.
, and
Wang
,
Q. G.
, 1999, “
An Extended Self-Organizing Map for Nonlinear System Identification
,”
Proceedings of the 38th IEEE Conference on Decision and Control
, Phoenix, AZ,
1
, pp.
1065
1070
.
21.
Fritzke
,
B.
, 1994, “
A Growing Neural Gas Network Learns Topologies
,”
Neural Inf. Process. Syst.
,
7
, pp.
625
632
.
22.
Fritzke
,
B.
, 1994, “
Growing Cell Structures – A Self-Organizing Network for Unsupervised and Supervised Learning
,”
Neural Netw.
,
7
(
9
), pp.
1441
1460
.
23.
Alahakoon
,
D.
,
Halgamuge
,
S. K.
, and
Srinivasan
,
B.
, 2000, “
Dynamic Self-Organizing Maps with Controlled Growth for Knowledge Discovery
,”
IEEE Trans. Neural Netw.
,
11
(
3
), pp.
601
614
.
24.
Liu
,
J.
, and
Djurdjanovic
,
D.
, 2008, “
Topology Preservation and Cooperative Learning in Identification of Multiple Model Systems
,”
IEEE Trans. Neural Netw.
,
19
(
12
), pp.
2065
2072
.
25.
Mignone
,
D.
,
Ferrari-Trecate
,
G.
, and
Morari
,
M.
, 2000, “
Stability and Stabilization of Piecewise Affine and Hybrid Systems: An LMI Approach
,”
Proceedings of the 39th IEEE Conference on Decision and Control, 2000
, Sydney,
1
, pp.
504
509
.
26.
Djurdjanovic
,
D.
,
Liu
,
J.
,
Marko
,
K.
, and
Ni
,
J.
, 2007, “
Immune Systems Inspired Approach to Anomaly Detection and Fault Diagnosis for Engines
,”
International Joint Conference on Neural Networks, IJCNN 2007
, Orlando, pp.
1375
1382
, Aug. 12–17.
27.
Sedgewick
,
R.
, 1995,
Algorithms in C++. Part 5, Graphical Algorithms
,
Addison-Wesley
,
London
.
28.
Kohonen
,
T.
, 1995,
Self Organizing Maps
, Springer Series in Information Sciences.
Springer-Verlag
,
Berlin
.
29.
Ljung
,
L.
, 1987,
System Identification: Theory for the User
,
Prentice-Hall
,
Englewood Cliffs
.
30.
McLachlan
,
G.
, and
Peel
,
D.
, 2000,
Finite Mixture Models
,
John Wiley & Sons
,
New York
.
31.
Zivkovic
,
Z.
, and
van der Heijden
,
F.
, 2004, “
Recursive Unsupervised Learning of Finite Mixture Models
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
26
(
5
), pp.
651
656
.
32.
Jiang
,
L.
,
Latronico
,
E.
, and
Ni
,
J.
, 2008, “
A Novel Method for Input Selection for the Modeling of Nonlinear Dynamic Systems
,”
Proceedings of ASME Dynamic Systems and Control Conference
, Paper no. DSCC2008-2217.
33.
Montgomery
,
D. C.
, 2001,
Introduction to Statistical Quality Control.
,
4th ed.
,
Wiley
,
New York
.
34.
Liu
,
J.
,
Djurdjanovic
,
D.
,
Marko
,
K.
, and
Ni
,
J.
, 2009, “
A Divide and Conquer Approach to Anomaly Detection, Localization and Diagnosis
,”
Mech. Syst. Signal Process.
,
23
(
8
), pp.
2488
2499
.
You do not currently have access to this content.