This paper presents a method for using reset control as an alternative way of obtaining dissipation for a class of port-Hamiltonian systems. One advantage of this approach is the simplicity of its implementation, which requires only a velocity observer. Another advantage is its robustness to modeling uncertainties, since it can be calculated independently of the plant structure. A gantry crane is selected as case study, yielding simulation and experimental results that show the good performance of this technique.

References

References
1.
Åström
,
K. J.
, 2000, “
Limitations on Control System Performance
,”
Eur. J. Control
,
6
, pp.
2
20
.
2.
Clegg
,
J. C.
, 1958, “
A Nonlinear Integrator for Servomechanisms
,”
Trans. A.I.E.E.M, Part II
,
77
, pp.
41
42
.
3.
Horowitz
,
I. M.
, and
Rosenbaum
,
P.
, 1975, “
Nonlinear Design for Cost of Feedback Reduction in Systems With Large Parameter Uncertainty
,”
Int. J. Control
,
24
(
6
), pp.
977
1001
.
4.
Beker
,
O.
,
Hollot
,
C. V.
,
Chait
,
Y.
, and
Han
,
H.
, 2004, “
Fundamental Properties of Reset Control Systems
,”
Automatica
,
40
, pp.
905
915
.
5.
Baños
,
A.
, and
Barreiro
,
A.
, 2009,
Delay-Independent Stability of Reset Systems
,
IEEE Trans. Autom. Control
,
54
(
2
), pp.
341
346
.
6.
Barreiro
,
A.
, and
Baños
,
A.
, 2010, “
Delay-Dependent Stability of Reset Systems
,”
Automatica
,
46
(
1
), pp.
216
221
.
7.
Baños
,
A.
,
Carrasco
,
J.
, and
Barreiro
,
A.
, 2011, “
Reset Times-Dependent Stability of Reset Control Systems
,”
IEEE Trans. Autom. Control
,
56
(
1
), pp.
217
223
.
8.
Carrasco
,
J.
,
Baños
,
A.
, and
van der Schaft
,
A. J.
, 2010, “
A Passivity-Based Approach to Reset Control Systems Stability
,”
Syst. Control Lett.
,
59
(
1
), pp.
18
24
.
9.
Fernández Villaverde
,
A.
,
Barreiro
,
A.
,
Baños
,
A.
, and
Carrasco
,
J.
, 2011, “
Reset Control for Passive Bilateral Teleoperation
,”
IEEE Trans. Ind. Electron.
,
56
(
7
), pp.
3037
3045
.
10.
Bupp
,
R. T.
,
Bernstein
,
D. S.
,
Chellaboina
,
V. S.
, and
Haddad
,
W. M.
, 2000, “
Resetting Virtual Absorbers for Vibration Control
,”
J. Vib. Control
,
6
(
61
), pp.
61
83
.
11.
Haddad
,
W. M.
,
Nersesov
,
S. G.
, and
Chellaboina
,
V. S.
, 2003, “
Energy-based Control for Hybrid Port-Controlled Hamiltonian Systems
,”
Automatica
,
39
, pp.
1425
1435
.
12.
Ortega
,
R.
,
van der Schaft
,
A. J.
,
Maschke
,
B.
, and
Escobar
,
G.
, 2002, “
Interconnection and Damping Assignment Passivity-Based Control of Port-Controlled Hamiltonian Systems
,”
Automatica
,
38
, pp.
585
596
.
13.
Ortega
,
R.
,
van der Schaft
,
A. J.
,
Maschke
,
B.
, and
Escobar
,
G.
, 1999, “
Energy-Shaping of Port-Controlled Hamiltonian Systems by Interconnection
,”
Proceedings of the CDC 1999
,
Phoenix, AZ
, pp.
1646
1651
.
14.
Hogan
,
N.
, 1985, “
Impedance Control: An Approach to Manipulation, Parts I-III
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
1
24
.
15.
van der Schaft
,
A. J.
, 2000,
L2—Gain and Passivity Techniques in Nonlinear Control
,
2nd ed.
,
Springer-Verlag
,
London
.
16.
Haddad
,
W. M.
,
Chellaboina
,
V. S.
, and
Nersesov
,
S. G.
, 2006,
Impulsive and Hybrid Dynamical Systems—Stability, Dissipativity and Control
,
Princeton Series in Applied Mathematics
,
Princeton University Press
,
Princeton, NJ
.
17.
Aghannan
,
N.
, and
Rouchon
,
P.
, 2003,
An Intrinsic Observer for a Class of Lagrangian Systems
,
IEEE Trans. Autom. Control
,
48
(
6
), pp.
936
945
.
You do not currently have access to this content.