The use of pneumatic devices is widespread among different industrial fields, in tasks like handling or assembly. Pneumatic systems are low-cost, reliable, and compact solutions. However, its use is typically restricted to simple tasks due to the poor performance achieved in applications where accurate motion control is required. One of the key elements required to achieve a good control performance is the model of the servopneumatic system. An accurate model may be of vital importance not only in the simulation steps needed to test the control strategy but also as a part of the controller itself. This work presents a new servopneumatic system model primarily developed for control tasks, namely, to predict pneumatic and friction forces in dynamic tests. The model can also be used in simulation tasks to predict the piston position and velocity. The performance on both applications is validated experimentally.

References

References
1.
Wait
,
K. W.
, and
Goldfarb
,
M.
, 2010, “
Enhanced Performance and Stability in Pneumatic Servosystems With Supplemental Mechanical Damping
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
4
), p.
041012
.
2.
Sorli
,
M.
,
Figliolini
,
G.
, and
Almondo
,
A.
, 2010, “
Mechatronic Model and Experimental Validation of a Pneumatic Servo-Solenoid Valve
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
5
), p.
054503
.
3.
Richard
,
E.
, and
Scavarda
,
S.
, 1996, “
Comparison Between Linear and Nonlinear Control of an Electropneumatic Servodrive
,
ASME J. Dyn. Syst., Meas., Control
,
118
(
2
), pp.
245
252
.
4.
Thomasset
,
D.
,
Scavarda
,
S.
,
Sesmat
,
S.
, and
Belgharbi
,
M.
, 1999, “
Analytical Model of the Flow Stage of a Pneumatic Servo-Distributor for Simulation and Nonlinear Control
,”
Proceedings of the Sixth Scandinavian International Conference on Fluid Power Tampere
,
Finland
, pp.
848
860
.
5.
Carneiro
,
J. F.
, and
Almeida
,
F. G.
, 2006, “
Modeling Pneumatic Servovalves Using Neural Networks
,”
Proceedings of the 2006 IEEE Conference on Computer Aided Control Systems Design
,
Munich, Germany
, pp.
790
795
.
6.
Carneiro
,
J. F.
, and
Almeida
,
F. G.
, 2006, “
Pneumatic Servovalve Models Using Artificial Neural Networks
,”
Proceedings of the Bath Symposium on Power Transmission and Motion Control
,
Bath, UK
, pp.
195
208
.
7.
Karnopp
,
D.
, 1985, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
100
107
.
8.
Canudas De Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K.
, and
Lischinsky
,
P.
, 1995, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.
9.
Swevers
,
J.
,
Al-Bender
,
F.
,
Ganseman
,
C. G.
, and
Prajogo
,
T.
, 2000, “A
n Integrated Friction Model Structure With Improved Presliding Behavior for Accurate Friction Compensation
,”
IEEE Trans. Autom. Control
,
45
(
4
), pp.
675
686
.
10.
Carneiro
,
J. F.
, and
Almeida
,
F. G.
, 2006, “
Reduced Order Thermodynamic Models for Servopneumatic Actuator Chambers
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
220
(
4
), pp.
301
314
.
11.
Richer
,
E.
, and
Hurmuzlu
,
Y.
, 2000, “
A High Performance Pneumatic Force Actuator System: Part I—Nonlinear Mathematical Model
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
3
), pp.
416
425
.
12.
Ning
,
S.
, and
Bone
,
G. M.
, 2005, “
Development of a Nonlinear Dynamic Model for a Servo Pneumatic Positioning System, Mechatronics and Automation
,”
2005 IEEE International Conference
, Vol. 1, pp.
43
48
.
13.
Carneiro
,
J. F.
, and
Almeida
,
F. G.
, 2007, “
Heat Transfer Evaluation on Industrial Pneumatic Cylinders
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
221
(
1
), pp.
119
128
.
14.
Drakunov
,
S.
,
Hanchin
,
G. D.
,
Su
,
W. C.
, and
Ozguner
,
U.
, 1997, “
Nonlinear Control of a Rodless Pneumatic Servoactuator, or Sliding Modes Versus Coulomb Friction
,”
Automatica
,
33
(
7
), pp.
1401
1408
.
15.
Richer
,
E.
, and
Hurmuzlu
,
Y.
, 2000, “
A High Performance Pneumatic Force Actuator System: Part II—Nonlinear Controller Design
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
3
), pp.
426
434
.
16.
Brun
,
X.
,
Thomasset
,
D.
, and
Bideaux
,
E.
, 2002,
Influence of the Process Design on the Control Strategy: Application in Electropneumatic Field
,”
Control Eng. Pract.
,
10
(
7
), pp.
727
735
.
17.
Barth
,
E. J.
,
Goldfarb
,
M.
, and
Al-Dakkan
,
K. A.
, 2003, “
Energy Saving Control for Pneumatic Servo Systems
,”
Proceedings of the 2003 IEEE/ASME International Conference on Advanced Mechatronics
,
Kobe, Japan
, pp.
284
289
.
18.
Carneiro
,
J. F.
, and
Almeida
,
F. G.
, 2011, “
VSC Approach Angle Based Boundary Layer Thickness: A New Variation Law and Its Stability Proof
,” 2011 Bath/ASME Symposium on Fluid Power and Motion Control, Arlington, VA.
19.
Sorli
,
M.
, and
Gastaldi
,
L.
, 2009, “
Thermic Influence on the Dynamics of Pneumatic Servosystems,”
ASME J. Dyn. Syst., Meas., Control
,
131
(
2
), p.
024501
.
20.
Richard
,
E.
, 1990, “De La Commande Lineaire Et Non Lineaire En Position Des Systems Electropneumatiques,” Ph.D. thesis, Institut National des Sciences Appliquées de Lyon.
21.
Pandian
,
S.
,
Hayakawa
,
Y.
,
Kanazawa
,
Y.
,
Kamoyama
,
Y.
, and
Kawamura
,
S.
, 1997, “
Practical Design of a Sliding Mode Controller for Pneumatic Actuators
,”
ASME J. Dyn. Syst., Meas., Control
,
119
(
4
), pp.
666
674
.
22.
Noorgard
,
M.
,
Ravn
,
O.
,
Poulsen
,
N. K.
, and
Hansen
,
L. K.
, 2003,
Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook
,
Springer Verlag
,
London
.
23.
Haykin
,
S.
, 1999,
Neural Networks: A Comprehensive Foundation
,
Prentice Hall
,
New Jersey
.
24.
Ljung
,
L.
, 1999,
System Identification: Theory for the User
,
Prentice Hall
,
Upper Saddle River
.
25.
Ravanbod-Shirazi
,
L.
, and
Besançon-Voda
,
A.
, 2003, “
Friction Identification Using the Karnopp Model, Applied to an Electropneumatic Actuator
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
217
(
2
), pp.
123
138
.
26.
Lopes
,
A. M.
, and
Almeida
,
F. G.
, 2007, “
Acceleration-Based Force-Impedance Control of a Six-Dof Parallel Manipulator
,
Ind. Robot: Int. J.
,
34
(
5
), pp.
386
399
.
You do not currently have access to this content.