This paper focuses on an adaptive dynamic surface based nonsingular fast terminal sliding mode control (ADS-NFTSMC) for a class of nth-order uncertain nonlinear systems in semistrict feedback form. A simple and effective controller has been obtained by introducing dynamic surface control (DSC) technique on the basis of second-order filters that the “explosion of terms” problem caused by backstepping method can be avoided. The nonsingular fast terminal sliding mode control is adopted in the last step of the controller design, and the error convergence rate is improved. An composite adaptive law is used to gain fast and accurate parameter estimation. Finally, simulation results are presented to illustrate the effectiveness of the proposed method.

References

References
1.
Utkin
,
V.
,
Guldncr
,
J.
, and
Shi
,
J.
, 1999,
Sliding Modes in Electromechanical System
,
Taylor & Francis
,
London
.
2.
Kristic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P.
, 1995,
Nonlinear and Adaptive Control Design
,
Wiley
,
New York
.
3.
Yao
,
B.
, and
Tomizuka
,
M.
, 1994, “
Smooth Adaptive Sliding Mode Control of Robot Manipulators With Guaranteed Transient Performance
,”
ASME J. Dyn. Syst. Man Cybern.
,
SMC-8
, pp.
101
109
.
4.
Rios-Bolivar
,
M.
, and
Zinober
,
A. S. I.
, 1997, “
Dynamical Adaptive Sliding Mode Output Tracking Control of a Class of Nonlinear Systems
,”
Int. J. Robust Nonlinear Control
,
7
, pp.
387
405
.
5.
Rios-Bolivar
,
M.
,
Zinober
,
A. S. I.
, and
Sira-Ramirez
,
H.
, 1996, “
Dynamical Sliding Mode Control via Adaptive Input-Output Linearization: A Backstepping Approach
,”
Robust Control via Variable Structure and Lyapunov Techniques
,
F.
Garofalo
and
L.
Glielmo
, eds.,
Springer-Verlag
,
Heidelberg
, pp.
15
35
.
6.
Koshkouei
,
A. J.
, and
Zinober
,
A. S. I.
, 1999, “
Adaptive Sliding Backstepping Control of Nonlinear Semi-Strict Feedback Form Systems
,”
Proceedings of the 7th IEEE Mediterranean Control Conference
,
Haifa
, pp.
2376
2383
.
7.
Rios-Bolivar
,
M.
, and
Zinober
,
A. S. I.
, 1998, “
A Symbolic Computation Toolbox for the Design of Dynamical Adaptive Nonlinear Control
,”
Appl. Math. Comput. Sci.
,
8
, pp.
73
88
.
8.
Lin
,
F. J.
,
Shen
,
P. H.
, and
Hsu
,
S. P.
, 2002, “
Adaptive Backstepping Sliding Mode Control for Linear Induction Motor Drive
,”
IEE Proc. Electr. Power Appl.
,
149
(
3
), pp.
184
194
.
9.
Lin
,
F. J.
,
Chang
,
C. K.
, and
Huang
,
P. K.
, 2007, “
FPGA-Based Adaptive Backstepping Sliding-Mode Control for Linear Induction Motor Drive
,”
IEEE Trans. Power Electron.
,
22
(
4
), pp.
1222
1231
.
10.
Yip
,
P. P.
, and
Hedrick
,
J. K.
, 1998, “
Adaptive Dynamic Surface Control: A Simplified Algorithm for Adaptive Backstepping Control of Nonlinear Systems
.
Int. J. Control
,
71
, pp.
959
979
.
11.
Hedrick
,
J. K.
, and
Yip
,
P. P.
, 2000, “
Multiple Sliding Surface Control: Theory and Application
,”
ASME J. Dyn. Syst., Meas., Control
,
122
, pp.
586
593
.
12.
Swaroop
,
D.
,
Hedrick
,
J. K.
,
Yip
,
P. P.
, and
Gerdes
,
J. C.
, 2000, “
Dynamic Surface Control for a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
45
, pp.
1893
1899
.
13.
Song
,
B.
,
Hedrick
,
J. K.
, and
Howell
,
A.
, 2002, “
Robust Stabilization and Ultimate Boundedness of Dynamic Surface Control Systems via Convex Optimization
,”
Int. J. Control
,
75
, pp.
870
881
.
14.
Wang
,
D.
, and
Huang
,
J.
, 2005, “
Neural Network-Based Adaptive Dynamic Surface Control for a Class of Uncertain Nonlinear Systems in Strict-Feedback Form
,”
IEEE Trans. Neural Networks
,
16
, pp.
195
202
.
15.
Yang
,
Z. J.
,
Toshimasa
,
N.
,
Shunshoku
,
K.
, and
Kiyoshi
,
W.
, 2007, “
Dynamic Surface Control Approach to Adaptive Robust Control of Nonlinear Systems in Semi-Strict Feedback Form
,”
Int. J. Sys. Sci.
,
38
(
9
), pp.
709
724
.
16.
Chen
,
J.
,
Li
,
Z. P.
,
Zhang
,
G. Z.
, and
Gan
,
M. G.
, 2010, “
Adaptive Robust Dynamic Surface Control With Composite Adaption Law
,”
Int. J. Adapt. Control Signal Process.
,
24
(
12
), pp.
1036
1050
.
17.
Lu
,
X. Y.
, and
Hedrick
,
J. K.
, 2000, “
Integral Filters From a New Viewpoint and Their Application in Nonlinear Control Design
,”
Proceedings of IEEE International Conference on Contro1 Applications
,
Anchorage, Alaska
, pp.
501
506
.
18.
Zhang
,
H. P.
, 2004, “
Robust Backstepping Control Method Using Sliding Modes With Its Application to the Fin Stabilizer
,” Dissertation for Doctor Degree, Harbing Engineering University, Harbing.
19.
Wu
,
Y. X.
, 2006, “
Sliding Mode Control Theory and Its Application in Mobile Manipulators
,” Dissertation for Doctor Degree, South China University of Technology, Guangzhou.
20.
Li
,
C. Y.
,
Jing
,
W. X.
, and
Gao
,
C. S.
, 2009, “
Adaptive Backstepping-Based Flight Control System Using Integral Filters
,”
Aerosp. Sci. Technol.
,
13
(
2–3
), pp.
105
113
.
21.
Feng
,
Y.
,
Yu
,
X.
, and
Man
,
Z.
, 2002, “
Non-Singular Adaptive Terminal Sliding Mode Control of Rigid Manipulators
,”
Automatica
,
38
(
11
), pp.
2159
2167
.
22.
Zheng
,
J. F.
,
Feng
,
Y.
,
Zheng
,
X. M.
,
Yang
,
X. Q.
, 2009, “
Adaptive Backstepping-Based Terminal-Sliding Mode Control for Uncertain Nonlinear Systems
,”
Control Theory Appl.
,
26
(
4
), pp.
410
414
.
23.
Zhou
,
L.
,
Jiang
,
C. S.
, and
Du
,
Y. L.
, 2009, “
A Robust and Adaptive Terminal Sliding Mode Control Based on Backstepping
,”
Control Theory Appl.
,
26
(
6
), pp.
678
682
.
24.
Wu
,
J. H.
,
Pu
,
D. L.
, and
Ding
,
H.
, 2007, “
Adaptive Robust Motion Control of SISO Nonlinear Systems With Implementation on Linear Motors
,”
Mechatronics
,
17
(
4–5
), pp.
263
270
.
25.
Yu
,
S.
,
Du
,
J.
,
Yu
,
X.
, and
Xu
,
H.
, 2008, “
A Novel Recursive Terminal Sliding Mode With Finite-Time Convergence
,”
Proceedings of the 17th World Congress, the International Federation of Automatic Control
, pp.
5945
5949
.
26.
Polycarpou
,
M. M.
, and
Ioannou
,
P. A.
, 1993, “
A Robust Adaptive Nonlinear Control Design
,”
Proceedings of American Control Conference
,
San Francisco, CA
, pp.
1365
1369
.
27.
Mitrinovic
,
D. S.
, 1970,
Analytic Inequalities
,
Springer
,
New York
.
28.
Barambones
,
O.
, and
Etxebarria
,
V.
, 2001, “
Robust Sliding Composite Adaptive Control for Mechanical Manipulators With Finite Error Convergence Time
,”
Int. J. Syst. Sci.
,
32
(
4
), pp.
1101
1108
.
You do not currently have access to this content.