This paper concerns a linear-matrix-inequality (LMI)-based method of designing a robust modified repetitive-control system (MRCS) for a class of strictly proper plants with periodic uncertainties. It exploits the nature of control and learning and the periodicity and continuity of repetitive control to convert the design problem into a robust stabilization problem for a continuous-discrete 2D system. The LMI technique and Lyapunov stability theory are used to derive an LMI-based asymptotic stability condition that can be used directly in the design of the gains of the repetitive controller. Two tuning parameters in the condition enable preferential adjustment of control and learning. A numerical example illustrates the tuning procedure and demonstrates the effectiveness of the method.

References

References
1.
Hara
,
S.
,
Yamamoto
,
Y.
,
Omata
,
T.
, and
Nakano
,
M.
, 1988, “
Repetitive Control System: A New Type Servo System for Periodic Exogenous Signals
,”
IEEE Trans. Autom. Control
,
33
, pp.
659
668
.
2.
Doh
,
T. Y.
, and
Chung
,
M. J.
, 2003, “
Repetitive Control Design for Linear Systems with Time-Varying Uncertainties
,”
IEE Proc.: Control Theory Appl.
,
150
, pp.
427
432
.
3.
Wang
,
Y. G.
,
Wang
,
D. W.
, and
Wang
,
X. C.
, 2005, “
A Three-Step Design Method for Performance Improvement of Robust Repetitive Control
,”
Proceedings of the American Control Conference
, Vol.
2
, pp.
1220
1225
.
4.
Galkowski
,
K.
,
Paszke
,
W.
,
Sulikowski
,
B.
,
Rogers
,
E.
, and
Owens
,
D. H.
, 2002, “
LMI Based Stability Analysis and Controller Design for a Class of 2D Continuous-Discrete Linear Systems
,”
Proceedings of the 2002 American Control Conference
, Vol.
1
, pp.
29
34
.
5.
Galkowski
,
K.
,
Paszke
,
W.
,
Rogers
,
E.
,
Xu
,
S.
,
Lam
,
J.
, and
Owens
,
D. H.
, 2003, “
Stability and Control of Differential Linear Repetitive Processes Using an LMI Setting
,”
IEEE Trans. Circuits Syst., II: Analog Digital Signal Process.
,
50
, pp.
662
666
.
6.
Hladowski
,
L.
,
Cai
,
Z.
,
Galkowski
,
K.
,
Rogers
,
E.
,
Freeman
,
C. T.
, and
Lewin
,
P. L.
, 2008, “
Using 2D Systems Theory to Design Output Signal Based Iterative Learning Control Laws with Experimental Verification
,”
Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico
, pp.
3026
3031
.
7.
Wu
,
M.
,
Zhou
,
L.
,
She
,
J.-H.
, and
He
,
Y.
, 2010, “
Design of Robust Output-Feedback Repetitive Controller for Class of Linear Systems With Uncertainties
,”
Sci. China Ser. F, Inf. Sci.
,
53
, pp.
1006
1015
.
8.
Ye
,
Y.
,
Zhou
,
K.
,
Zhang
,
B.
,
Wang
,
D.
, and
Wang
,
J.
, 2006, “
High-Performance Repetitive Control of PWM DC-AC Converters With Real-Time Phase-Lead FIR Filter
,”
IEEE Trans. Circuits Syst., II: Express Briefs
,
53
, pp.
768
772
.
9.
Doh
,
T. Y.
,
Ryoo
,
J. R.
, and
Chung
,
M. J.
, 2006, “
Design of a Repetitive Controller: An Application to the Track-Following Servo System of Optical Disk Drives
,”
IEE Proc.: Control Theory Appl.
,
153
, pp.
323
330
.
10.
Zhao
,
H.
,
Rahn
,
C. D.
, and
Canbolat
,
H.
, 2005, “
Repetitive Control for an Electrostatic Microbridge Actuator
,”
ASME 2005 International Mechanical Engineering Congress and Exposition
, pp.
453
460
.
11.
Doi
,
M.
,
Masuko
,
M.
,
ITo
,
Y.
, and
Tezuka
,
A.
, 1985, “
A Study on Parametric-Vibration in Chuck Work
,”
Jpn. Soc. Mech. Eng.
,
28
, pp.
2774
2780
.
12.
Harata
,
Y.
,
Asano
,
F.
,
Luo
,
Z. W.
,
Taji
,
K.
, and
Uno
,
Y.
, 2009, “
Biped Gait Generation Based on Parametric Excitation by Knee-Joint Actuation
,”
Robotica
,
27
, pp.
1063
1073
.
13.
Omata
,
T.
,
Hara
,
T.
, and
Nakano
,
M.
, 1985, “
Repetitive Control for Linear Periodic Systems
,”
Electr. Eng. Jpn.
,
105
, pp.
131
138
.
14.
Hanson
,
R. D.
, and
Tsao
,
T. C.
, 2000, “
Periodic Sampling Interval Repetitive Control and Its Application to Variable Spindle Speed Noncircular Turning Process
,”
ASME J. Dyn. Syst., Meas., Control
,
122
, pp.
560
566
.
15.
Yamamoto
,
Y.
, 1994, “
A Function Space Approach to Sampled Data Control Systems and Tracking Problems
,”
IEEE Trans. Autom. Control
,
39
, pp.
703
713
.
16.
Khargonekar
,
P. P.
,
Petersen
,
I. R.
, and
Zhou
,
K.
, 2008, “
Robust Stabilization of Uncertain Linear Systems: Quadratic Stabilizability and H Control Theory
,”
IEEE Trans. Autom. Control
,
35
, pp.
356
361
.
17.
Petersen
,
I. R.
, and
Hollot
,
C. V.
, 1986, “
A Riccati Equation Approach to the Stabilization of Uncertain Linear Systems
,”
Automatica
,
22
, pp.
397
411
.
You do not currently have access to this content.