We consider general nonlinear systems with time-varying input and state delays for which we design predictor-based feedback controllers. Based on a time-varying infinite-dimensional backstepping transformation that we introduce, our controller achieves global asymptotic stability in the presence of a time-varying input delay, which is proved with the aid of a strict Lyapunov function that we construct. Then, we “backstep” one time-varying integrator and we design a globally stabilizing controller for nonlinear strict-feedback systems with time-varying delays on the virtual inputs. The main challenge in this case is the construction of the backstepping transformations since the predictors for different states use different prediction windows. Our designs are illustrated by three numerical examples, including unicycle stabilization.

References

References
1.
Richard
,
J.-P.
, 2003, “
Time-Delay Systems: An Overview of Some Recent Advances and Open Problems
,”
Automatica
,
39
, pp.
1667
1694
.
2.
Cloosterman
,
M. B. G.
,
van de Wouw
,
N.
,
Heemels
,
W. P. M. H.
, and
Nijmeijer
,
H.
, 2009, “
Stability of Networked Control Systems With Uncertain Time-Varying Delays
,”
IEEE Trans. Autom. Control
,
54
, pp.
1575
1580
.
3.
Hespanha
,
J. P.
,
Naghshtabrizi
,
P.
, and
Xu
,
Y.
, 2007, “
A Survey of Recent Results in Networked Control Systems
,”
Proc. IEEE
,
95
, pp.
138
162
.
4.
Montestruque
,
L. A.
, and
Antsaklis
,
P.
, 2004, “
Stability of Model-Based Networked Control Systems With Time-Varying Transmission Lines
,”
IEEE Trans. Autom. Control
,
49
, pp.
1562
1572
.
5.
Witrant
,
E.
,
de-Wit
,
C. C.
,
Georges
,
D.
, and
Alamir
,
M.
, 2007, “
Remote Stabilization via Communication Networks With a Distributed Control Law
,”
IEEE Trans. Autom. Control
,
52
, pp.
1480
1485
.
6.
Sipahi
,
R.
,
Lammer
,
S.
,
Niculescu
,
S.-I.
, and
Helbing
,
D.
, 2006, “
On Stability Analysis and Parametric Design of Supply Networks Under the Presence of Transportation Delays
,” ASME-IMECE Conference.
7.
Sterman
,
J. D.
, 2000,
Business Dynamics: Systems Thinking and Modeling for a Complex World
,
McGraw-Hill
,
New York
.
8.
Litrico
,
X.
, and
Fromion
,
V.
, 2004, “
Analytical Approximation of Open-Channel Flow for Controller Design
,”
Appl. Math. Model.
,
28
, pp.
677
695
.
9.
Orosz
,
G.
, and
Stepan
,
G.
, 2006, “
Subcritical Hopf Bifurcations in a Car-Following Model With Reaction-Time Delay
,”
Proc. R. Soc. London
,
462
, pp.
2643
2670
.
10.
Sipahi
,
R.
,
Atay
,
F. M.
, and
Niculescu
,
S.-I.
, 2007, “
Stability of Traffic Flow Behavior With Distributed Delays Modeling the Memory Effect of the Drivers
,”
SIAM J. Appl. Math.
,
68
, pp.
738
759
.
11.
Arstein
,
Z.
, 1982, “
Linear Systems With Delayed Controls: A Reduction
,”
IEEE Trans. Autom. Control
,
27
, pp.
869
879
.
12.
Krstic
,
M.
, 2008, “
Lyapunov Tools for Predictor Feedbacks for Delay Systems: Inverse Optimality and Robustness to Delay Mismatch
,”
Automatica
,
44
, pp.
2930
2935
.
13.
Manitius
,
A. Z.
, and
Olbrot
,
A. W.
, 1979, “
Finite Spectrum Assignment for Systems With Delays
,”
IEEE Trans. Autom. Control
,
AC-24
, pp.
541
553
.
14.
Michiels
,
W.
, and
Niculescu
,
S.-I.
, 2007,
Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach
,
SIAM
,
Philadelphia, PA
.
15.
Mondie
,
S.
, and
Michiels
,
W.
, 2003, “
Finite Spectrum Assignment of Unstable Time-Delay Systems With a Safe Implementation
,”
IEEE Trans. Autom. Control
,
48
, pp.
2207
2212
.
16.
Niculescu
,
S.-I.
, 2001,
Delay Effects on Stability
,
Springer
,
New York
.
17.
Zhong
,
Q.-C.
, 2006,
Robust Control of Time-Delay Systems
,
Springer
,
New York
.
18.
Smith
,
O. J. M.
, 1959, “
A Controller to Overcome Dead Time
,”
ISA Trans.
,
6
, pp.
28
33
.
19.
Bekiaris-Liberis
,
N.
, and
Krstic
,
M.
, 2010, “
Stabilization of Linear Strict-Feedback Systems With Delayed Integrators
,”
Automatica
,
46
, pp.
1902
1910
.
20.
Jankovic
,
M.
, 2009, “
Forwarding, Backstepping, and Finite Spectrum Assignment for Time Delay Systems
,”
Automatica
,
45
, pp.
2
9
.
21.
Jankovic
,
M.
, 2010, “
Recursive Predictor Design for State and Output Feedback Controllers for Linear Time Delay Systems
,”
Automatica
,
46
, pp.
510
517
.
22.
Watanabe
,
K.
,
Nobuyama
,
E.
,
Kitamori
,
T.
, and
Ito
,
M.
, 1992, “
A New Algorithm for Finite Spectrum Assignment of Single-Input Systems With Time Delay
,”
IEEE Trans. Autom. Control
,
37
, pp.
1377
1383
.
23.
Niculescu
,
S.-I.
, and
Annaswamy
,
A. M.
, 2003, “
An Adaptive Smith-Controller for Time-Delay Systems With Relative Degree n* ≤ 2
,”
Syst. Control Lett.
,
49
, pp.
347
358
.
24.
Yildiray
,
Y.
,
Annaswamy
,
A.
,
Kolmanovsky
,
I. V.
, and
Yanakiev
,
D.
, 2010, “
Adaptive Posicast Controller for Time-Delay Systems With Relative Degree n* ≤ 2
,”
Automatica
,
46
, pp.
279
289
.
25.
Bekiaris-Liberis
,
N.
, and
Krstic
,
M.
, 2010, “
Delay-Adaptive Feedback for Linear Feedforward Systems
,”
Syst. Control Lett.
,
59
, pp.
277
283
.
26.
Bresch-Pietri
,
D.
, and
Krstic
,
M.
, “
Delay-Adaptive Predictor Feedback for Systems With Unknown Long Actuator Delay
,”
IEEE Trans. Autom. Control
,
55
, pp.
2106
2112
.
27.
Bresch-Pietri
,
D.
, and
Krstic
M.
, 2009, “
Adaptive Trajectory Tracking Despite Unknown Input Delay and Plant Parameters
,”
Automatica
,
45
, pp.
2074
2081
.
28.
Krstic
,
M.
, 2010, “
Input Delay Compensation for Forward Complete and Feed Forward Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
55
, pp.
287
303
.
29.
Mazenc
,
F.
,
Mondie
,
S.
, and
Francisco
,
R.
, 2004, “
Global Asymptotic Stabilization of Feedforward Systems With Delay at the Input
,”
IEEE Trans. Autom. Control
,
49
, pp.
844
850
.
30.
Mazenc
,
F.
, and
Niculescu
,
S.-I.
, 2011, “
Generating Positive and Stable Solutions Through Delayed State Feedback
,”
Automatica
,
47
, pp.
525
533
.
31.
Jankovic
,
M.
, 2001, “
Control Lyapunov-Razumikhin Functions and Robust Stabilization of Time Delay Systems
,”
IEEE Trans. Autom. Control
,
46
, pp.
1048
1060
.
32.
Jankovic
,
M.
, 2009, “
Cross-Term Forwarding for Systems With Time Delay
,”
IEEE Trans. Autom. Control
,
54
, pp.
498
511
.
33.
Karafyllis
,
I.
, 2006, “
Finite-Time Global Stabilization by Means of Time-Varying Distributed Delay Feedback
,”
SIAM J. Control Optim.
,
45
, pp.
320
342
.
34.
Mazenc
,
F.
, and
Bliman
,
P.-A.
, 2006, “
Backstepping Design for Time-Delay Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
51
, pp.
149
154
.
35.
Pepe
,
P.
,
Karafyllis
,
I.
, and
Jiang
,
Z.-P.
, 2008, “
On the Liapunov-Krasovskii Methodology for the ISS of Systems Described by Coupled Delay Differential and Difference Equations
,”
Automatica
,
44
, pp.
2266
2273
.
36.
Krstic
,
M.
, 2010, “
Lyapunov Stability of Linear Predictor Feedback for Time-Varying Input Delay
,”
IEEE Trans. Autom. Control
,
55
, pp.
554
559
.
37.
Nihtila
,
M.
, 1989, “
Adaptive Control of a Continuous-Time System With Time-Varying Input Delay
,”
Syst. Control Lett.
,
12
, pp.
357
364
.
38.
Nihtila
,
M.
, 1991, “
Finite Pole Assignment for Systems With Time-Varying Input Delays
,”
Proceedings of IEEE Conference Decision Control
, pp.
927
928
.
39.
Angeli
,
D.
, and
Sontag
,
E. D.
, 1999, “
Forward Completeness, Unboundedness Observability, and Their Lyapunov Characterizations
,”
Syst. Control Lett.
,
38
, pp.
209
217
.
40.
Sontag
,
E.
, and
Wang
,
Y.
, 1995, “
On Characterizations of the Input-to-State Stability Property
,”
Syst. Control Lett.
,
24
, pp.
351
359
.
41.
Khalil
,
H.
, 2002,
Nonlinear Systems
,
3rd ed.
,
Prentice Hall
,
Englewood Cliffs, NJ
.
42.
Hale
,
J. K.
, and
Lunel
,
V. S. M.
, 1993,
Introduction to Functional Differential Equations
,
Springer-Verlag
, New York.
43.
Karafyllis
,
I.
, “
Non-Uniform in Time Small-Gain Theorem for a Wide Class of Control Systems With Outputs
,”
Eur. J. Control
,
10
, pp.
307
323
.
44.
J.-B.
Pomet
, 1992, “
Explicit Design of Time-Varying Stabilizing Control Laws for a Class of Controllable Systems Without Drift
,”
Syst. Control Lett.
,
18
, pp.
147
158
.
You do not currently have access to this content.