In this paper, we consider the problem of delay-dependent stability of a class of Lur’e systems of neutral type with time-varying delays and sector-bounded nonlinearity using Lyapunov–Krasovskii (LK) functional approach. By using a candidate LK functional in the stability analysis, a less conservative absolute stability criterion is derived in terms of linear matrix inequalities (LMIs). In addition to the LK functional, conservatism in the proposed stability analysis is further reduced by imposing tighter bounding on the time-derivative of the functional without neglecting any useful terms using minimal number of slack matrix variables. The proposed analysis, subsequently, yields a stability criterion in convex LMI framework, and is solved nonconservatively at boundary conditions using standard LMI solvers. The effectiveness of the proposed criterion is demonstrated through a standard numerical example and Chua’s circuit.

References

References
1.
Wang
,
J.
,
Duan
,
Z.
,
Yang
,
Y.
, and
Huang
,
L.
, 2009,
Analysis and Control of Nonlinear Systems with Stationary Sets
,
World Scientific
,
Singapore.
2.
Han
,
Q. L.
, 2007, “
On Designing Time-Varying Delay Feedback Controllers for Master-Slave Synchronization of Lur’e Systems
,”
IEEE Trans. Circuits Syst., I: Regul. Pap.
,
54
(
7
), pp.
1573
1583
.
3.
Zhang
,
X. M.
, and
Han
,
Q. L.
, 2009, “
A New Stability Criterion for a Partial Element Equivalent Circuit Model of Neutral Type
,”
IEEE Trans. Circuits Syst., II: Express Brief
s,
56
(
10
), pp.
798
802
.
4.
Yue
,
D.
, and
Han
,
Q. L.
, 2004, “
A Delay-Dependent Stability Criterion for Neutral Systems and Its Application to a Partial Element Equivalent Circuit Model
,”
IEEE Trans. Circuits Syst., II: Express Brief
s,
51
(
12
), pp.
685
689
.
5.
Han
,
Q. L.
, and
Yu
,
L.
, 2004, “
Robust Stability of Linear Neutral Systems with Nonlinear Parameter Perturbations
,”
IEE Proc.: Control Theory Appl.
,
151
(
5
), pp.
539
546
.
6.
Gu
,
K.
, and
Niculescu
,
S. I.
, 2003, “
Survey on Recent Results in the Stability and Control of Time-Delay Systems
,”
J. Dyn. Syst., Meas., Contro
l,
125
(
2
), pp.
158
165
.
7.
Han
,
Q. L.
,
Xue
,
A.
,
Liu
,
S.
, and
Yu
,
X.
, 2008, “
Robust Absolute Stability Criteria for Uncertain Lur’e Systems of Neutral Type
,”
Int. J. Robust Nonlinear Contro
l,
18
(
3
), pp.
278
295
.
8.
Gao
,
J.
,
Su
,
H.
,
Ji
,
X.
, and
Chu
, 2008, “
Stability Analysis for a Class of Neutral Systems with Mixed Delays and Sector-Bounded Nonlinearity
,”
Nonlinear Anal.: Real World Appl.
,
9
(
5
), pp.
2350
2360
.
9.
Yin
,
C.
,
Zhong
,
S. M.
, and
Chen
,
W. F.
, 2010, “
On Delay-Dependent Robust Stability of a Class of Uncertain Mixed Neutral and Lur’e Dynamical Systems With Interval Time-Varying Delay
,”
J. Franklin Inst.
,
347
(
9
), pp.
1623
1642
.
10.
Kwon
,
O. M.
,
Park
,
J. H.
, and
Lee
,
S. M.
, 2010, “
An Improved Delay-Dependent Criterion for Asymptotic Stability of Uncertain Dynamic Systems With Time-Varying Delays
,”
J. Optim. Theory Appl.
,
145
(
2
), pp.
343
353
.
11.
Gahinet
,
P.
,
Nemirovskii
,
A.
,
Laub
,
A. J.
, and
Chilali
,
M.
, (1995),
LMI Control Toolbox: for use with MATLAB
,
Mathworks Inc.
,
Natick.
12.
Han
,
Q. L.
, 2005, “
Absolute Stability of Time-Delayed Systems with Sector Bounded Nonlinearity
,”
Automatic
a,
41
(
12
), pp.
2171
2176
.
13.
Yue
,
D.
,
Tian
,
E.
, and
Zhang
,
Y.
, 2009, “
A Piecewise Analysis Method to Stability Analysis of Linear Continuous/Discrete Systems with Time-Varying Delay
,”
Int. J. Robust Nonlinear Contro
l,
19
(
13
), pp.
1493
1518
.
14.
Boyd
,
S.
,
Ghaoui El
,
L.
,
Feron
,
E.
,
Balakrishnan
,
V.
, 1994,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philedelphia
.
15.
Gu
,
K.
,
Kharitonov
,
V. L.
, and
Chen
,
J.
, 2003,
Stability Analysis of Time-delay Systems.
Birkhäuser
,
Boston, MA.
You do not currently have access to this content.