A new approach to the control design for fuzzy dynamical systems is proposed. For a fuzzy dynamical system, the uncertainty lies within a fuzzy set. The desirable system performance is twofold: one deterministic and one fuzzy. While the deterministic performance assures the bottom line, the fuzzy performance enhances the cost consideration. Under this setting, a class of robust controls is proposed. The control is deterministic and is not if-then rules-based. An optimal design problem associated with the control is then formulated as a constrained optimization problem. We show that the problem can be solved and the solution exists and is unique. The closed-form solution and cost are explicitly shown. The resulting control is able to guarantee the prescribed deterministic performance and minimize the average fuzzy performance.

References

References
1.
Zadeh
,
L. A.
, 1965, “
Fuzzy Sets
,”
Inf. Control
,
8
, pp.
338
353
.
2.
Dubois
,
D.
, and
Prade
,
H.
, 1991, “
Fuzzy Sets in Approximate Reasoning, Part 1: Inference With Possibility Distributions
,”
Fuzzy Sets Syst.
,
40
, pp.
143
201
.
3.
Dubois
,
D.
, and
Prade
,
H.
, 1991, “
Fuzzy Sets in Approximate Reasoning, Part 2: Logical Approaches
,”
Fuzzy Sets Syst.
,
40
, pp.
202
244
.
4.
Yager
,
R. R.
, and
Zadeh
,
L. A.
, eds., 1992,
An Introduction to Fuzzy Logic Applications in Intelligent Systems
,
Kluwer
,
Norwell, MA
.
5.
Kalman
,
R. E.
, 1994, “
Randomness Reexamined
,”
Model. Identif. Control
,
15
, pp.
141
151
.
6.
Kalman
,
R. E.
, 1996, personal communication.
7.
Zadeh
,
L. A.
, 1990, “
The Birth and Evolution of Fuzzy Logic
,”
Int. J. Gen. Syst.
,
17
, pp.
95
105
.
8.
Kalman
,
R. E.
, 1960, “
A New Approach to Linear Filtering and Prediction Problems
,”
Trans. ASME, J. Basic Eng.
,
82
(
Series D
), pp.
35
35
.
9.
Kalman
,
R. E.
, 1960, “
Contributions to the Theory of Optimal Control
,”
Boletin de la Sociedad Mastematica Mexicana
,
5
, pp.
102
119
.
10.
Kumar
,
P. R.
, and
Varaiya
,
P.
, 1986,
Stochastic Systems: Estimation, Identification, and Adaptive Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
11.
Hanss
,
M.
, 2005,
Applied Fuzzy Arithmetic: An Introduction With Engineering Applications
,
Springer-Verlag
,
Berlin/Heidelberg
.
12.
Bede
,
B.
,
Rudas
,
I. J.
, and
Fodor
,
J.
, 2007, “
Friction Model by Using Fuzzy Differential Equations
,”
Foundations of Fuzzy Logic and Soft Computing
,
Springer-Verlag
,
Berlin/Heidelberg
, pp.
23
32
.
13.
Soong
,
T. T.
, 1990,
Active Structural Control: Theory and Practice
,
Longman Scientific and Technical
,
Essex, England
.
14.
Bezdek
,
J. C.
, ed., 1994, “
Special Issue on Fuzziness vs. Probability—The N-th Round
,”
IEEE Trans. Fuzzy Syst.
,
2
, pp.
4
45
.
15.
Corless
,
M.
, 1993, “
Control of Uncertain Nonlinear Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
115
, pp.
362
372
.
16.
Leitmann
,
G.
, 1993, “
On One Approach to the Control of Uncertain Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
115
, pp.
373
380
.
17.
Horn
,
R. A.
, and
Johnson
,
C. R.
, 1985,
Matrix Analysis
,
Cambridge University Press
,
Cambridge, England
.
18.
Chen
,
Y. H.
, and
Leitmann
,
G.
, 1987, “
Robustness of Uncertain Systems in the Absence of Matching Assumptions
,”
Int. J. Control
,
45
, pp.
1527
1542
.
19.
Hale
,
J. K.
, 1969,
Ordinary Differential Equations
,
Wiley-Interscience
,
New York, NY
.
20.
Chen
,
Y. H.
, 1996, “
Performance Analysis of Controlled Uncertain Systems
,”
Dyn. Control
,
6
, pp.
131
142
.
21.
Klir
,
G. J.
, and
Yuan
,
B.
, 1995,
Fuzzy Sets and Fuzzy Logic: Theory and Applications
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
22.
Bronshtein
,
I. N.
, and
Semendyayev
,
K. A.
, 1985, (English Translation: K. A. Hirsh),
Handbook of Mathematics
,
Van Nostrand Reinhold
,
New York, NY
.
23.
Chen
,
Y. H.
, 2010, “
Fuzzy Dynamical System Approach to the Observer Design of Uncertain Systems
,”
J. Syst. and Control Eng.
,
224
, pp.
509
520
.
You do not currently have access to this content.