Nowadays, the precise control of the air fuel ratio (AFR) in spark ignition (SI) engines plays a crucial role in meeting the more and more restrictive standard emissions for the passenger cars and the fuel economy required by the automotive market as well. To attain this demanding goal, the development of an advanced AFR control strategy embedding highly predictive models becomes mandatory for the next generation of electronic control unit (ECU). Conversely, the adoption of more complex control strategies affects the development time of the ECU increasing the time-to-market of new engine models. In this paper to solve the AFR control problem for gasoline direct injection (GDI) and to speed up the design of the entire control system, a gain scheduling PI model-based control strategy is proposed. To this aim, AFR dynamics are modeled via a first order time delay system whose parameters vary strongly with the fresh air mass entering the cylinders. Nonlinear relations have been found to describe the behavior of model parameters in function of air mass. Closed loop performances, when this novel controller is nested in the control loop, are compared to those provided by the classical PI Ziegler–Nichols control action with respect to different cost functions. Model validation as well as the effectiveness of the control design are carried out by means of ECU-1D engine co-simulation environment for a wide range of engine working conditions. The combination in one integrated designing environment of control systems and virtual engine, simulated through high predictive commercial one dimensional code, becomes a high predictive tool for automotive control engineers and enables fast prototyping.

References

References
1.
Police
,
G.
,
Diana
,
S.
,
Giglio
,
V.
,
Iorio
,
B.
, and
Rispoli
,
N.
, 2006, “
Downsizing of Si Engines by Turbo-Charging
,”
Proceedings of 8th Biennial ASME Conference on Engineering Systems Design and Analysis (ESDA2006)
.
2.
Stan
,
C.
, 1999,
Direct Injection Systems for Spark-Ignition and Compression-Ignition Engines
,
SAE International
,
Warrendale, PA
.
3.
Zhao
,
F.
,
Harrington
,
D. L.
, and
Lai
,
M.-C. D.
, 2002,
Automotive Gasoline Direct-Injection Engines
,
SAE International
,
Warrendale, PA
.
4.
Heck
,
R. M.
,
Farrauto
,
R. J.
, and
Gulati
,
S. T.
, 2009,
Catalytic Air Pollution Control: Commercial Technology
,
3rd ed.
,
Wiley
,
New York
.
5.
Brehob
,
D.
,
Fleming
,
J.
,
Haghgooie
,
M.
, and
Stein
,
R.
, 1998, “
Stratified-Charge Engine Fuel Economy and Emission Characteristics
,” SAE Technical Paper No. 982704.
6.
Zhao
,
F. Q.
,
Lai
,
M. C.
, and
Harrington
,
D. L.
, 1997, “
A Review of Mixture Preparation and Combustion Control Strategies for Spark-Ignited Direct Injection Gasoline Engines
,” SAE Technical Paper No. 970627.
7.
Tounsi
,
M. F.
,
Menegazzi
,
P.
, and
Rouchon
,
P.
, 2003, “
Nox Trap Model for Lean-Burn Engine Control
”, SAE Technical Paper No. 2003-01-2292.
8.
Druzhinina
,
M.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
, 1999, “
Hybrid Control of a Gasoline Direct Injection Engine
,”
Proceedings of 38th IEEE Conference on Decision and Control
, pp.
471
477
.
9.
Sun
,
J.
,
Kolmanovsky
,
I.
,
Boesch
,
M.
, and
Dixon
,
J.
, 2001, “
Control of Disi Engines: Analytical and Experimental Investigations
,”
Proceedings of IFAC Symposium Advances Automotive Control
, pp.
249
254
.
10.
Druzhinina
,
M.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
, 2002, “
Speed-Gradient Approach to Torque and Air-to-Fuel Ratio Control in Disc Engines
”,
IEEE Trans. Control Syst. Technol.
,
10
(
5
), pp.
671
678
.
11.
Sun
,
J.
,
Kolmanovsky
,
I.
,
Brehob
,
D.
,
Cook
,
J.
,
Buckland
,
J.
, and
Haghgooie
,
M.
, 1999. “
Modeling and Control Problems for Gasoline Direct Injection Engines
,”
Proceedings of IEEE International Conference on Control Applications
, pp.
471
477
.
12.
Bemporad
,
A.
,
Giorgetti
,
N.
,
Kolmanovsky
,
I.
, and
Hrovat
,
D.
, 2002, “
A Hybrid System Approach to Modeling and Optimal Control of Disc Engines
,”
Proceedings of 41th IEEE Conference on Decision and Control
, pp.
1582
1587
.
13.
Giorgetti
,
N.
,
Ripaccioli
,
G.
,
Bemporad
,
A.
,
Kolmanovsky
,
I.
, and
Hrovat
,
D.
, 2006, “
Hybrid Model Predictive Control of Direct Injection Stratified Charge Engines
,”
IEEE/ASME Trans. Mechatron.
,
11
(
5
), pp.
499
506
.
14.
Bemporad
,
A.
, and
Morari
,
M.
, 1999, “
Control of Systems Integrating Logic, Dynamics, and Constraints
,”
Automatica
,
35
(
3
), pp.
407
427
.
15.
Lazar
,
M.
, 2006, “
Model Predictive Control of Hybrid Systems: Stability and Robustness
,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
16.
Rinehart
,
M.
,
Dahleh
,
M.
, and
Kolmanovsky
,
I.
, 2005, “
Optimal Control of the Disc Engine Using Hierarchical and Quantized Control
,”
American Control Conference
, pp.
997
1002
.
17.
Kienke
,
U.
, and
Nielsen
,
L.
, 2000,
Automotive Control Systems
,
Springer-Verlag
,
Berlin
.
18.
Zhang
,
F.
,
Grigoriadist
,
K.
,
Franchek
,
M.
, and
Makki
,
I.
, 2005, “
Linear Parameter-Varying Lean Burn Air-Fuel Ratio Control
,”
Proceedings of 44th IEEE Conference on Decision and Control
, pp.
2688
2693
.
19.
Zhong
,
Q.-C.
, 2006,
Robust Control of Time-Delay Systems
,
Springer
.
20.
Moiola
,
J.
, and
Chen
,
G.
, 1996,
Hopf Bifurcation Analysis: A Frequency Domain Approach, Vol. 21 of Series on Nonlinear Science, Series A
,
World Scientific
,
Singapore
.
21.
Zhang
,
F.
,
Grigoriadist
,
K. M.
,
Franchek
,
M. A.
, and
Makki
,
I. H.
, 2006, “
Transient Lean Burn Air-Fuel Ratio Control Using Input Shaping Method Combined With Linear Parameter-Varying Control
,”
Proceedings of American Control Conference
.
22.
Maloney
,
P. J.
, 2001, “
A Production Wide-Range AFR Control Alorithm for Direct-Injection Gasoline Application
,” SAE Technical Paper No. 2001-01-0260.
23.
Khalil
,
H.
, 2002,
Nonlinear Systems
,
3rd ed.
,
Prentice-Hall, Upper Saddle River
,
NJ
.
24.
Sontag
,
E.
, 1998,
Mathematical Control Theory: Deterministic Finite Dimensional Systems
,
Springer-Verlag
,
Berlin
.
25.
Sinnamon
,
J. F.
, 2007, “
Co-Simulation Analysis of Transient Response and Control for Engines With Variable Valvetrains
,” SAE Technical Paper No. 2007-01-1283.
26.
D’Silva
,
S. H.
,
Sundaram
,
S.
, and D’
Ambrosio
,
J. G.
, 2006, “
Co-Simulation Platform for Diagnostic Development of a Controlled Chassis System
”, SAE Technical Paper No. 2006-01-1058.
27.
Ju-Biao
,
Y.
, 2009. “
Research 27on Transient Air Fuel Ratio Control of Gasoline Engines
,”
Proceedings of International Forum on Information Technology and Applications
, pp.
610
613
.
28.
Albrecht
,
A.
,
Knop
,
V.
,
Corde
,
G.
,
Simonet
,
L.
, and
Castagn
,
M.
, 2006, “
Observer Design for Downsized Gasoline Engine Control Using 1D Engine Simulation
,”
Oil Gas Sci. Technol.
,
61
(
1
), pp.
165
179
.
29.
Bozza
,
F.
,
Gimelli
,
A.
, and
Torella
,
E.
, 2002, “
The Potential of 1D Simulation Models in Control Application of VVT Engines
,”
Proceedings of International Workshop on Diagnostics in Automotive Engines and Vehicles
.
30.
di Gaeta
,
A.
,
Montanaro
,
U.
, and
Giglio
,
V.
, 2010, “
Idle Speed Control of gdi-si Engines via ecu-1d Engine Co-Simulation
,” SAE Technical Paper No. 2010-01-2220.
31.
Leith
,
D.
, and
Leithead
,
W.
, 2000, “
Survey of Gain-Scheduling Analysis and Design
,”
Int. J. Control
,
73
(
11
), pp.
1001
1025
.
32.
RICARDO Software, 2009, “
User Manuals for Ricardo WAVE Suite 7.2.
,” www.ricardo.comwww.ricardo.com.
33.
Astrom
,
K. J.
, and
Murray
,
R. M.
, 2008,
Feedback Systems: An Introduction for Scientists and Engineers
,
Princeton University
,
Princeton, NJ
.
34.
Heywood
,
J.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill, Inc.
,
New York
.
35.
Nicolao
,
G. D.
,
Scattolini
,
R.
, and
Siviero
,
C.
, 1996, “
Modelling the Volumetric Efficiency of IC Engines: Parametric, Non-Parametric and Neural Techniques
,”
Control Eng. Pract.
,
4
(
10
), pp.
1405
1415
.
36.
Jankovic
,
M.
, and
Magner
,
S. W.
, 2002, “
Variable Cam Timing: Consequences to Automotive Engine Control Design
,”
Proceedings of the 15th Triennial IFAC World Congress
.
37.
Corde
,
G.
,
Bianco
,
Y.
, and
Lecluse
,
Y.
, 1995, “
Air Mass Flow Rate Observer Applied to SI AFR Control
,” SAE Technical Paper No. 952460.
38.
Andersson
,
P.
, and
Eriksson
,
L.
, 2004, “
Mean-Value Observer for a Turbocharged Si-Engine
,”
Proceedings of IFAC Symposium on Advances in Automotive Control
, pp.
146
151
.
39.
di Gaeta
,
A.
,
Glielmo
,
L.
,
Barbarisi
,
O.
, and
Santini
,
S.
, 2002, “
An Extended Kalman Observer for the In-Cylinder Air Mass Flow Estimation
,”
Proceedings of International Conference on Nonlinear Dynamics and Control in Process Engineering (DINIP02)
.
40.
Stotsky
,
A.
, and
Kolmanovsky
,
I.
, 2002, “
Application of Input Estimation Techniques to Charge Estimation and Control in Automotive Engines
,”
Control Eng. Pract.
,
10
(
12
), pp.
1371
1383
.
41.
Stotsky
,
A.
,
Kolmanovsky
,
I.
, and
Eriksson
,
S.
, 2004, “
Composite Adaptive and Input Observer-Based Approches to the Cylinder Flow Estimation in Spark Ignition Automotive Engines
,”
Int. J. Adapt. Control Signal Process.
,
18
(
2
), pp.
125
144
.
42.
Hendricks
,
E.
, and
Luther
,
J.
, 2001, “
Model and Observer Based Control of Internal Combustion Engines
,”
Proceedings of International Workshop on Modeling, Emissions and Control in Automotive Engines (MECA01)
.
43.
Liung
,
L.
, 1999,
System Identification: Theory for the User
,
Prentice Hall
,
Englewood Cliff, NJ.
44.
Astrom
,
K. J.
, and
Wittenmark
,
B.
, 1994,
Adaptive Control
,
2nd ed.
,
Addison-Wesley
.
45.
Mariniello
,
C.
,
Mirko
,
M. T. R.
,
Palladino
,
A.
, and
Fiengo
,
G.
, 2009, “
Fuel Consumption Reduction During Automotive Idle Speed Control
,”
Proceedings of the 10th European Control Conference (ECC09)
.
46.
Padeste
,
L.
,
Tagliaferri
,
S.
, and
Baiker
,
A.
, 1996, “
Behavior of Three-Way Catalyst in a Hybrid Drive System
,”
Chem. Eng. Technol.
,
19
(
1
), pp.
89
95
.
47.
di Gaeta
,
A.
,
Santini
,
S.
,
Glielmo
,
L.
,
Cristofaro
,
F. D.
,
Giuseppe
,
C. D.
, and
Caraceni
,
A.
, 2003, “
An Algorithm for the Calibration of Wall-Wetting Model Parameters
,” SAE Technical Paper No. 2003-01-1054.
You do not currently have access to this content.