The kinematic differential equations express the paths taken by points, lines, and coordinate frames attached to a rigid body in terms of the instantaneous screw for the motion of that body. Such differential equations are linear but with a time-varying coefficient and hence solvable by power series. A single-loop kinematic chain may be expressed by a system of such differential equations subject to a linear constraint. A single matrix factorization followed by a sequence of substitutions of linear-system right-hand-side terms determines successive orders of the joint rate coefficients in the kinematic solution for this mechanism. The present work extends this procedure to the forward dynamics problem, applying it to a Clemens constant-velocity coupling expressed as a spatial 9R closed kinematic chain.

References

References
1.
Lipkin
,
H.
, and
Duffy
,
J.
, 2002, “
Sir Robert Stawell Ball and Methodologies of Modern Screw Theory
,”
Proc. Inst. Mech. Eng., Part C
,
216
(
1
), pp.
1
11
.
2.
Featherstone
,
R.
,
Rigid Body Dynamics Algorithms
(
Springer
,
New York
, 2008).
3.
Kieffer
,
J.
, 1994, “
Differential Analysis of Bifurcations and Isolated Singularities for Robots and Mechanisms
,”
IEEE Trans. Rob. Automation
,
10
(
1
), pp.
1
10
.
4.
Lerbet
,
J.
, and
Hao
,
K.
, 1999, “
Kinematics of Mechanisms to the Second Order-Application to the Closed Mechanisms
,”
Acta Appl. Math.
,
59
(
1
), pp.
1
20
.
5.
Milenkovic
,
P.
, 2010, “
Mobility of Single-Loop Kinematic Mechanisms Under Differential Displacement
,”
ASME J. Mech. Des.
,
132
, pp.
041001
-1–041001-
9
.
6.
Milenkovic
,
P. H.
, 2010, “
Mobility of Multi-Chain Platform Mechanisms Under Differential Displacement
,”
ASME J. Mech. Rob.
,
2
, pp.
031004
-1–031004-
9
.
7.
Karger
,
A.
, 1996, “
Singularity Analysis of Serial Robot-Manipulators
,”
ASME Jo. Mech. Des.
,
118
, pp.
520
525
.
8.
Rico
,
J. M.
,
Gallardo
,
J.
, and
Duffy
,
J.
, 1999, “
Screw Theory and Higher Order Kinematic Analysis of Open Serial and Closed Chains
,”
Mech. Mach. Theory
,
34
(
4
), pp.
559
586
.
9.
Cervantes-Sánchez
,
J. J.
,
Rico-Martínez
,
J. M.
, and
González-Montiel
,
G.
, 2009, “
The Differential Calculus of Screws: Theory, Geometrical Interpretation, and Applications
,”
Proc. Inst. Mech. Eng., Part C
,
223
(
6
), pp.
1449
1468
.
10.
Koetsier
,
T.
, 1986, “
From Kinematically Generated Curves to Instantaneous Invariants: Episodes in the History of Instantaneous Planar Kinematics
,”
Mech. Mach. Theory
,
21
(
6
), pp.
489
498
.
11.
Kane
,
T. R.
, 1973, “
Solution of Kinematical Differential Equations for a Rigid Body
,”
Trans. ASME, J. Appl. Mech.
,
4
, pp.
109
113
.
12.
Chou
,
J. C. K.
, 2002, “
Quaternion Kinematic and Dynamic Differential Equations
,”
IEEE Trans. Rob. Autom.
,
8
(
1
), pp.
53
64
.
13.
Milenkovic
,
P.
, 2011, “
Series Solution for Finite Displacement of Planar Four-Bar Linkages
,”
ASME J. Mech. Rob.
,
3
(
1
), pp.
014501
-1–014501-
7
.
14.
Milenkovic
,
P.
, “
Series Solution for Finite Displacement of Single-Loop Spatial Linkages
,”
Journal of Mechanisms and Robotics
(submitted).
15.
Karsai
,
G.
, 2001, “
Method for the Calculation of the Combined Motion Time Derivatives of Optional Order and Solution for the Inverse Kinematic Problems
,”
Mech. Mach. Theory
,
36
(
2
), pp.
261
272
.
16.
Schiehlen
,
W.
, 1997, “
Multibody System Dynamics: Roots and Perspectives
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
149
188
.
17.
Betsch
,
P.
, and
Leyendecker
,
S.
, 2006, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part II: Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
,
67
(
4
), pp.
499
552
.
18.
Waldron
,
K. J.
, 1966, “
The Constraint Analysis of Mechanisms
,”
J. Mech.
,
1
(
2
), pp.
101
114
.
19.
Tsai
,
L.W.
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
(
John Wiley and Sons
,
New York
, 1999).
20.
Sommerfeld
,
A.
, and
Stern
,
M. O.
,
Mechanics. Lectures on Theoretical Physics
, Volume
I
(
Academic
,
New York
, 1952).
21.
Lanczos
,
C.
,
The Variational Principles of Mechanics
(
University of Toronto
,
Toronto
, 1970).
22.
Betsch
,
P.
, 2005, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems: Part I: Holonomic Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
50–52
), pp.
5159
5190
.
23.
Sokolov
,
A.
, and
Xirouchakis
,
P.
, 2007, “
Dynamics Analysis of a 3-DOF Parallel Manipulator with RPS Joint Structure
,”
Mech. Mach. Theory
,
42
(
5
), pp.
541
557
.
24.
Buffinton
,
K. W.
, 2005, “
Kane’s Method in Robotics
,”
Robotics and Automation Handbook
,
T. R.
Kurfess
, ed.,
CRC
,
Boca Raton, FL
, Chap. 6, pp.
6
-1–6-
31
.
25.
Negrut
,
D.
,
Haug
,
E. J.
, and
German
,
H. C.
, 2003, “
An Implicit Runge–Kutta Method for Integration of Differential Algebraic Equations of Multibody Dynamics
,”
Multibody Syst. Dyn.
,
9
(
2
), pp.
121
142
.
26.
Blajer
,
W.
, 2002, “
Elimination of Constraint Violation and Accuracy Aspects in Numerical Simulation of Multibody Systems
,”
Multibody Syst. Dyn.
,
7
(
3
), pp.
265
284
.
27.
Han
,
H. S.
, and
Seo
,
J. H.
, 2004, “
Design of a Multi-Body Dynamics Analysis Program using the Object-Oriented Concept
,”
Adv. Eng. Software
,
35
(
2
), pp.
95
103
.
28.
Clemens
,
M.
, 1869, “
Improvement in Apparatus for Transmitting Rotary Motion
,” U.S. Patent No. 96,395.
29.
Salerno
,
R. J.
,
Canfield
,
S. L.
, and
Ganino
,
A. J.
, 1995, “
Parallel, Four Degree-of-Freedom Robotic Wrist
,”
Proceedings of the 1995 ASME Design Engineering Technical Conferences
, Boston, MA, Vol.
82
, pp.
765
771
.
30.
Milenkovic
,
P.
, 2011, “
Nonsingular Spherically Constrained Clemens Linkage Wrist
,”
ASME J. Mech. Rob.
,
3
(
1
), pp.
011014
-1–011014-
8
.
31.
Cripe
,
A. R.
, 1969, “
Articulated Car Single Axle Truck
,” U.S. Patent No. 3,424,105.
32.
Myard
,
F. E.
, 1933, “
Les Transmissions De Rotation a Couples D’Emboitement—Application Aux Automobiles
,”
Le Génie Civ.
,
102
, pp.
539
541
.
33.
Hunt
,
K. H.
, 1973, “
Constant-Velocity Shaft Couplings: A General Theory
,”
ASME J. Eng. Ind.
,
95
, pp.
455
464
.
34.
Lipkin
,
H.
, 2005, “
Time Derivatives of Screws with Applications to Dynamics and Stiffness
,”
Mech. Mach. Theory
,
40
(
3
), pp.
259
273
.
35.
Stramigioli
,
S.
, and
Bruyninckx
,
H.
, 2001, “
Geometry of Dynamic and Higher-Order Kinematic Screws
,”
Proceedings of the 2001 IEEE International Conference on Robotics and Automation
, Vol.
4
, pp.
3344
3349
.
36.
Gallardo
,
J.
,
Rico
,
J. M.
, and
Frisoli
,
A.
, 2003, “
Dynamics of Parallel Manipulators by Means of Screw Theory
,”
Mech. Mach. Theory
,
38
(
11
), pp.
1113
1131
.
37.
Khan
,
W. A.
,
Krovi
,
V. N.
, and
Saha
,
S. K.
, 2005, “
Recursive Kinematics and Inverse Dynamics for a Planar 3R Parallel Manipulator
,”
ASME J. Dyn. Syst., Meas., Control
,
127
, pp.
529
536
.
38.
Seymour
,
K.
, 2007, “
JLAPACK Source and Class Files Version 0.8
,” http://www.Netlib.org/java/f2j/http://www.Netlib.org/java/f2j/
39.
Dormand
,
J. R.
,
Numerical Methods for Differential Equations: A Computational Approach
(
CRC
,
Boca Raton, FL
, 1996).
40.
Selig
,
J. M.
,
Geometrical Methods in Robotics
(
Springer
,
New York
, 1996).
41.
Negrut
,
D.
,
Jay
,
L. O.
, and
Khude
,
N.
, 2009, “
A Discussion of Low-Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
4
, pp.
0210081
–021008-
11
.
42.
Jay
,
L. O.
, and
Negrut
,
D.
, 2007, “
Extensions of the HHT-α Method to Differential-Algebraic Equations in Mechanics
,”
Electron. Trans. Numer. Anal.
,
26
, pp.
190
208
.
You do not currently have access to this content.