It is always a challenge to design a real-time optimal full flight envelope controller for a miniature helicopter due to the nonlinear, underactuated, uncertain, and highly coupled nature of its dynamics. This paper integrates the control of translational, rotational, and flapping motions of a simulated miniature aerobatic helicopter in one unified optimal control framework. In particular, a recently developed real-time nonlinear optimal control method, called the θ-D technique, is employed to solve the resultant challenging problem considering the full nonlinear dynamics without gain scheduling techniques and timescale separations. The uniqueness of the θ-D method is its ability to obtain an approximate analytical solution to the Hamilton–Jacobi–Bellman equation, which leads to a closed-form suboptimal control law. As a result, it can provide a great advantage in real-time implementation without a high computational load. Two complex trajectory tracking scenarios are used to evaluate the control capabilities of the proposed method in full flight envelope. Realistic uncertainties in modeling parameters and the wind gust condition are included in the simulation for the purpose of demonstrating the robustness of the proposed control law.

References

References
1.
Department of Defense
,
Airspace Integration Plan for Unmanned Aviation
(
Office of the Secretary of Defense
,
Washington, DC
, November 2004), pp.
1
5
, 21–28.
2.
Association for Unmanned Vehicle Systems International’s Aerial Robotic Competition
,” http://avdil.gtri.gatech.edu/AUVS/IARCLaunchPoint.htmlhttp://avdil.gtri.gatech.edu/AUVS/IARCLaunchPoint.html, Document accessed: March 21, 2008.
3.
Kaminer
,
I.
,
Pascoal
,
A.
,
Hallberg
,
E.
, and
Silvestre
,
E.
, 1998, “
Trajectory Tracking for Autonomous Vehicles: An Integrated Approach to Guidance and Control
,”
J. Guid. Control Dyn.
,
21
(
1
), pp.
29
38
.
4.
Shin
,
J.
,
Nonami
,
K.
,
Fujiwara
,
D.
, and
Hazawa
,
K.
, 2005, “
Model-Based Optimal Attitude and Positioning Control of Small-Scale Unmanned Helicopter
,”
Robotica
,
Cambridge University Press
,
United Kingdom
, Vol.
23
, pp.
51
63
.
5.
Perhinschi
,
M.
, and
Prasad
,
J.
, 1998, “
A Simulation Model of an Autonomous Helicopter
,”
Proceedings of the RPV/UAV Systems Thirteenth Bristol International Conference and Exhibition
,
Bristol, United Kingdom
, March, pp.
1
13
.
6.
Cheviron
,
T.
,
Chriette
,
A.
, and
Plestan
,
F.
, 2006, “
Robust Control of an Autonomous Reduced Scale Helicopter in Presence of Wind Gusts
,”
AIAA Guidance, Navigation, and Control Conference and Exhibit
,
Keystone, CO
, Aug. 21–24, pp.
1
22
.
7.
Civita
,
M.
,
Papageorgiou
,
G.
,
Messner
,
W.
, and
Kanade
,
T.
, 2006, “
Design and Flight Ttesting of an Controller for a Robotic Helicopter
,”
J. Guid. Control Dyn.
,
29
(
2
), pp.
485
494
.
8.
Bendotti
,
P.
, and
Morris
,
J.
, 1995, “
Robust Hover Control for a Model Helicopter
,”
Proceedings of the 1995 American Control Conference
,
Seattle, WA
, June, pp.
682
687
.
9.
Kato
,
A.
,
Kobayashi
,
T.
,
Katayama
,
H.
, and
Ichikawa
,
A.
, 2003, “
Attitude Control of a Helicopter Model by Nonlinear Sampled-Data Control
,”
SICE 2003 Annual Conference
,
Fukui University
,
Japan
, Aug. 4–6, pp.
930
935
.
10.
Weilenmann
,
M.
,
Christen
,
U.
, and
Geering
,
H.
, 1994, “
Robust Helicopter Position Control at Hover
,”
Proceedings of the 1994 American Control Conference
,
Baltimore, MD
, June, pp.
2491
2495
.
11.
Perhinschi
,
M.
, and
Prasad
,
J.
, 1998, “
A Simulation Model of an Autonomous Helicopter
,”
Proceedings of the RPV/UAV Systems Thirteenth Bristol International Conference and Exhibition
,
Bristol, United Kingdom
, March, pp.
1
13
.
12.
Takahashi
,
M.
, 1994, “
H-Infinity Helicopter Flight Control Law Design With and Without Rotor State Feedback
,”
J. Guid. Control Dyn.
,
17
(
6
), pp.
1245
1251
.
13.
Shim
,
D.
,
Kim
,
H.
, and
Sastry
,
S.
, 2000 “
Control System Design for Rotocraft-Based Unmanned Aerial Vehicles Using Time-Domain System Identification
,”
Proceedings of the 2000 IEEE International Conference on Control Applications
,
Anchorage, AK
, Sept. 25–27, pp.
808
813
.
14.
Zeng
,
S.
, and
Zhu
,
J.
, 2006, “
Adaptive Compensated Dynamic Inversion Control for a Helicopter With Approximate Mathematical Model
,”
International Conference on Computational Intelligence for Modeling Control and Automation, and International Conference on Intelligent Agents
,
Web Technologies and Internet Commerce, IEEE
,
Sydney, Australia
, Nov. 28–Dec. 1, pp.
1
6
.
15.
Johnson
,
E.
, and
Kannan
,
S.
, 2005, “
Adaptive Trajectory Control for Autonomous Helicopters
,”
J. Guid. Control Dyn.
,
28
(
3
), pp.
524
538
.
16.
Spurgeon
,
S.
,
Edwards
,
C.
, and
Foster
,
N.
, 1996, “
Robust Model Reference Control Using a Sliding Mode Controller/Observer Scheme With Application to a Helicopter Problem
,”
1996 IEEE Workshop on Variable Structure Systems
,
Tokyo, Japan
, Dec. 5–6, pp.
36
41
.
17.
Oh
,
A.
,
Ryu
,
J.
, and
Agrawal
,
S.
, 2006, “
Dynamics and Control of a Helicopter Carrying a Payload Using a Cable-Suspended Robot
,”
ASME J. Mech. Des.
,
128
, pp.
1113
1121
.
18.
Verhulst
,
F.
, 2005,
Methods and Applications of Singular Perturbations Boundary Layers and Multiple Timescale Dynamics
Springer Science + Business Media, Inc.
,
New York, NY, USA
.
19.
Avanzini
,
G.
, and
Matteis
,
G.
, 2001, “
Two-Timescale Inverse Simulation of a Helicopter Model
,”
J. Guid. Control Dyn.
,
24
(
2
), pp.
330
339
.
20.
Reiner
,
J.
,
Balas
,
G.
, and
Garrard
,
W.
, 1996, “
Flight Control Design Using Robust Dynamic Inversion and Time-Scale Separation
,”
Automatica
,
32
(
11
), pp.
1493
1504
.
21.
Marconi
,
L.
, and
Naldi
,
R.
, 2006, “
Robust Nonlinear Control for a Miniature Helicopter for Aerobatic Maneuvers
,”
Proceedings 32nd Rotorcraft Forum
,
Maasctricht, The Netherlands
, pp.
1
16
.
22.
Avanzini
,
G.
, and
Matteis
,
G.
, 1999, “
Two-Timescale-Integration Method for Inverse Simulation
,”
J. Guid. Control Dyn.
,
22
(
3
), pp.
330
339
.
23.
Hopkins
,
R.
, and
Xu
,
Y.
, 2008, “
Position Tracking Control for a Simulated Miniature Hhelicopter
,”
AIAA Guidance, Navigation, and Control Conference and Exhibit
,
Honolulu, Hawaii
, Aug.
18
21
.
24.
Bogdanov
,
A.
, and
Wan
,
E.
, 2007, “
State-Dependent Riccati Equation Control for Small Autonomous Helicopters
,”
J. Guid. Control Dyn.
,
30
(
1
), pp.
47
60
.
25.
Xin
,
M.
, and
Balakrishnan
,
S. N.
, 2005, “
A New Method for Suboptimal Control of a Class of Nonlinear Ssystems
,”
Opt. Control Appl. Methods
,
26
(
3
), pp.
55
83
.
26.
Xin
,
M.
,
Balakrishnan
,
S. N.
,
Stansbery
,
D. T.
, and
Ohlmeyer
,
E. J.
, 2004, “
Nonlinear Missile Autopilot Design With Technique
,”
J. Guid. Control Dyn.
,
27
(
3
), pp.
406
417
.
27.
Gavrilets
,
V.
,
Mettler
,
B.
, and
Feron
,
E.
, 2003, “
Dynamic Model for a Miniature Aerobatic Helicopter
,” MIT-LIDS Report, Report No. LIDS-P–2580.
28.
Federal Aviation Administration, 1999, “
Criteria for Approval of Category III Weather Minima for Takeoff, Landing, and Rollout: Appendix 4—Wind Model for Approach and Landing Simulation
,” AC120–28D.
29.
Bryson
,
A. E.
, and
Ho
,
Y. C.
,
Applied Optimal Control
(
Hemisphere Publishing, Corp.
, 1975).
30.
Cloutier
,
J. R.
, and
Stansbery
,
D. T.
, 2002, “
The Capabilities and Art of State-Dependent Riccati Equation-Based Design
,”
Proceedings of the 2002 American Control Conference
, pp.
86
91
.
31.
Xin
,
M.
,
Balakrishnan
,
S. N.
, and
Ohlmeyer
,
E. J.
, 2006, “
Integrated Guidance and Control of Missiles With Method
,”
IEEE Trans. Control Syst. Technol.
,
14
(
6
), pp.
981
992
.
You do not currently have access to this content.