In this paper, the fractionalized differentiating method is implemented to reduce commensurate fractional order models complexity. The prominent properties of this method are its simplicity and guarantee of preserving the stability of a specific class of fractional order models in their reduced counterparts. The presented reduction method is employed in simplifying complicated fractional order controllers to a fractional order PID (FOPID) controller and proposing tuning rules for its parameters adjustment. Finally, the efficiency of the FOPID tuning rule obtained based on the proposed reduction method is shown in the temperature control of a cutting process.

References

References
1.
Westerlund
,
S.
, 1991, “
Dead Matter has Memory!
Phys. Scr.
,
43
(
2
), pp.
174
179
.
2.
Westerlund
,
S.
, and
Ekstam
,
L.
, 1994, “
Capacitor Theory
,”
IEEE Trans. Dielectr. Electr. Insul.
,
1
, pp.
826
839
.
3.
Darling
,
R.
, and
Newman
,
J.
, 1997, “
On the Short Behavior of Porous Intercalation Electrodes
,”
J. Electrochem. Soc.
,
144
(
9
), pp.
3057
3063
.
4.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
, 1997, “
Application of Fractional Derivatives to the Analysis of Damped Vibrations of Visco-Elastic Single Mass System
,”
Acta. Mech.
,
120
, pp.
109
125
.
5.
Chen
,
G.
, and
Friedman
,
G.
, 2005, “
An RLC Interconnect Model Based on Fourier Analysis
,”
IEEE Trans. Comput.-Aided Des.
,
24
(
2
), pp.
170
183
.
6.
Oldham
,
K. B.
, 2010, “
Fractional Differential Equations in Electrochemistry
,”
Adv. Eng. Software
,
41
(
1
), pp.
9
12
.
7.
Battaglia
,
J. L.
,
Cois
,
O.
,
Puigsegura
,
L.
, and
Oustaloup
,
A.
, 2001, “
Solving an Inverse Heat Conduction Problem Using a Non-Integer Identified Model
,”
Int. J. Heat Mass Transfer
,
44
(
14
), pp.
2671
2680
.
8.
Cois
,
O.
,
Oustaloup
,
A.
,
Poinot
,
T.
, and
Battaglia
,
J. L.
, 2001, “
Fractional State Variable Filter for System Identification by Fractional Model
,”
European Control Conference (ECC)
, Porto, Portugal.
9.
Cois
,
O.
,
Oustaloup
,
A.
,
Battaglia
,
E.
, and
Battaglia
,
J. L.
, 2002, “
Non Integer Model From Modal Decomposition for Time Domain Identification
,”
41st IEEE CDC’2002 Tutorial Workshop 2
, Las Vegas, USA.
10.
Sommacal
,
L.
,
Melchior
,
P.
, and
Oustaloup
,
A.
, 2008, “
Havriliak-Negami Function for Thermal System Identification
,”
American Control Conference (ACC)
, Seattle, Washington, pp.
1316
1321
.
11.
Podlubny
,
I.
, 1999, “
Fractional-Order Systems and PIλDμ-Controllers
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.
12.
Monje
,
C. A.
,
Vinagre
,
B. M.
,
Feliu
,
V.
, and
Chen
,
Y. Q.
, 2008, “
Tuning and Auto Tuning of Fractional Order Controllers for Industry Applications
,”
Control Eng. Pract.
,
16
(
7
), pp.
798
812
.
13.
Gutman
,
P.
,
Mannerfelt
,
C. F.
, and
Molander
,
P.
, 1982, “
Contributions to the Model Reduction Problem
,”
IEEE Trans. Autom. Control
,
27
(
2
), pp.
454
455
.
14.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic Press
,
San Diego
.
15.
Bonnet
,
C.
, and
Partington
,
J. R.
, 2000, “
Coprime Factorizations and Stability of Fractional Differential Systems
,”
Syst. Control Lett.
,
41
(
3
), pp.
167
174
.
16.
Matignon
,
D.
, 1996, “
Stability Results for Fractional Differential Equations With Applications to Control Processing
,”
IEEE-SMC Proceedings of the Computational Engineering in Systems Applications
, IMACS, Lille, France, Vol. 2, pp.
963
968
.
17.
Tavakoli-Kakhki
,
M.
, and
Haeri
,
M.
, 2009, “
Model Reduction in Commensurate Fractional-Order Linear Systems
”,
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
, Vol. 223, No. 4, pp.
493
505
.
18.
Tavakoli-Kakhki
,
M.
, and
Haeri
,
M.
, 2010, “
The Minimal State Space Realization for a Class of Fractional Order Transfer Functions
,
SIAM J. Control Optim.
,
48
(
7
), pp.
4317
4326
.
19.
Tavakoli-Kakhki
,
M.
,
Haeri
,
M.
, and
Tavazoei
,
M. S.
, 2010, “
Simple Fractional Order Model Structures and Their Applications in Control System Design
,”
Eur. J. Control
, in press.
20.
Hille
,
E.
, 1973,
Analytic Function Theory
,
Chelsea
,
New York
.
21.
Lepschy
,
A.
, and
Viaro
,
U.
, 1985, “
Model Reduction for Control Systems With Restricted Complexity Controllers
,”
J. Franklin Inst.
,
319
(
6
), pp.
559
567
.
22.
Zhao
,
C.
,
Xue
,
D.
, and
Chen
,
Y.
, 2005, “
A Fractional Order PID Tuning Algorithm for a Class of Fractional Order Plants
,”
IEEE International Conference on Mechatronics and Automation
, Niagara Falls, Canada, Vol. 1, pp.
216
221
.
23.
Valerio
,
D.
, and
da Costa
,
J. S.
, 2006, “
Tuning of Fractional PID Controllers With Ziegler-Nichols-Type Rules
,”
Signal Process.
,
86
(
10
), pp.
2771
2784
.
24.
Chen
,
Y.
,
Bhaskaran
,
T.
, and
Xue
,
D.
, 2008, “
Practical Tuning Rule Development for Fractional Order Proportional and Integral Controllers
,”
J. Comput. Nonlinear Dyn.
,
3
(
2
), p.
021403
.
25.
Biswas
,
A.
,
Das
,
S.
,
Abraham
,
A.
, and
Dasgupta
,
S.
, 2009, “
Design of Fractional-Order PIλDμ Controllers With an Improved Differential Evolution
,”
Eng. Applic. Artif. Intell.
,
22
(
2
), pp.
343
350
.
26.
Petras
,
I.
,
Vinagre
,
B. M.
,
Dorcak
,
V.
, and
Feliu
,
V.
, 2002, “
Fractional Digital Control of a Heat Solid: Experimental Results
,”
International Carpathian Control Conference (ICCC)
, Malenovice, Czech Republic.
27.
Benchellal
,
A.
,
Poinot
,
T.
, and
Trigeassou
,
J. C.
, 2006, “
Approximation and Identification of Diffusive Interfaces by Fractional Models
,”
Signal Process.
,
86
(
10
), pp.
2712
2727
.
28.
Gabano
,
J. D.
, and
Poinot
,
T.
, 2010, “
Fractional Modeling and Identification of Thermal Systems
,”
Signal Process.
, in press.
29.
Sandvik
,
A. B.
, 2010,
General Turning
. Available online: http://www2.coromant. sandvik.com/coromant/pdf/Metalworking_Products_061/tech_a_1.pdf.
30.
Rech
,
J.
,
Kusiakb
,
A.
, and
Battaglia
,
J. L.
, 2004, “
Tribological and Thermal Functions of Cutting Tool Coatings
,”
Surf. Coat. Technol.
,
186
(
3
), pp.
364
371
.
You do not currently have access to this content.