Model parameters of a nonlinear mechanical system are identifiable if a unique relationship exists between its input–output behavior and the parameter values. The identifiability analysis of the parameters is one of the most important steps in the parametric model identification of nonlinear mechanical systems. The concept and two numerical approaches of analyzing the identifiability are presented in this paper. We propose that, via case studies, one had better check of the local identifiability of a parametric model at the identified parameter point using the numerical approach, when the parameter identification procedure has been finished.
References
1.
Bellu
, G.
, Saccomani
, M. P.
, and Audoly
, S.
, 2007, “DAISY: A New Software Tool to Test Global Identifiability of Biological and Physiological Systems
,” Comput. Methods Programs Biomed.
, 88
, pp. 52
–61
.2.
Walter
, E.
, 1982, Identifiability of State Space Models
, Springer-Verlag
, Berlin
.3.
Walter
, E.
, and Pronzato
, L.
, 1996, “On the Identifiability and Distinguishability of Nonlinear Parametric Models
,” Math. Comput. Simul.
, 42
, pp. 125
–143
.4.
Godfrey
, K. R.
, and DiStefano
, J. J.
, 1987, “Identifiability of Model Parameters
,” Identifiability of Parametric Models
, E.
Walter
, ed., Pergamon
, Oxford, United Kingdom
.5.
Andronikou
, A. M.
, Bekey
, G. A.
, and Hadaegh
, F. Y.
, 1983, “Identifiability of Nonlinear Systems With Hysteretic Elements
,” ASME J. Dyn. Syst., Meas., Control
, 105
(4
), pp. 209
–214
.6.
Wang
, Q. G.
, 1991, “Identifiability of Lagrangian Systems With Application to Robot Manipulators
,” ASME J. Dyn. Syst., Meas., Control
, 113
(2
), pp. 289
–294
.7.
Franco
, G.
, Betti
, R.
, and Longman
, R. W.
, 2006, “On the Uniqueness of Solutions for the Identification of Linear Structural Systems
,” ASME J. Appl. Mech.
, 73
(1
), pp. 153
–162
.8.
Linderholt
, A.
, and Abrahamsson
, T.
, 2003, “Parameter Identifiability in Finite Element Model Error Localisation
,” Mech. Syst. Signal Process.
, 17
(3
), pp. 579
–588
.9.
Smith
, P. L.
, 1998, “Attention and Luminance Detection: A Quantitative Analysis
,” J. Exp. Psychol. Hum. Percept. Perform.
, 24
(1
), pp. 105
–133
.10.
Scheibe
, P. O.
, 2003, “Identifiability Analysis of Second-Order Systems
,” Nucl. Med. Biol.
, 30
, pp. 827
–832
.11.
Grewal
, M. S.
, and Glover
, K.
, 1976, “Identifiability of Linear and Nonlinear Dynamical Systems
,” IEEE Trans. Autom. Control
, AC-21
(6
), pp. 833
–837
.12.
Schröer
, K.
, Uhl
, L.
, and Albright
, S.
, 1992, “Ensuring Solvability and Analyzing Results of the Non-linear Robot Calibration Problem
,” Proceedings of 2nd Symposium on Measurement and Control in Robotics
, Tokyo, Japan
.13.
Ghanem
, R.
, and Romeo
, F.
, 2001, “A Wavelet-Based Approach for Model and Parameter Identification of Non-Linear Systems
,” Int. J. Non-Linear Mech.
, 36
(5
), pp. 835
–859
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.