This paper presents an experimentally validated control-oriented model and an observer for diesel oxidation catalyst (DOC)-diesel particulate filter (DPF) system in the context of exhaust gas NO and NO2 concentration estimations. NO and NO2 have different reaction characteristics within DPF and selective catalytic reduction (SCR) systems, two most promising diesel engine aftertreatment systems. Although the majority of diesel engine-out NOx emissions is NO, the commonly used DOC located upstream of a DPF and a SCR can convert a considerable amount of NO to NO2. Knowledge of the NO/NO2 ratio in exhaust gas is thus meaningful for the control and diagnosis of DPF and SCR systems. Existing onboard NOx sensors cannot differentiate NO and NO2, and such a sensory deficiency makes separate considerations of NO and NO2 in SCR control design challenging. To tackle this problem, a control-oriented dynamic model, which can capture the main NO and NO2 dynamics from engine-out, through DOC, and to DPF, was developed. Due to the computational limitation concerns, DOC and DPF are assumed to be standard continuously stirred tank reactors in order to obtain a 0D ordinary differential equation model. Based on the model, an observer, with the measurement from a commercially available NOx sensor, was designed to estimate the NO and NO2 concentrations in the exhaust gas along the aftertreatment systems. The stability of the observer was shown through a Lyapunov analysis assisted by insight into the system characteristics. The control-oriented model and the observer were validated with engine experimental data and the measured NO/NO2 concentrations by a Horiba gas analyzer. Experimental results show that the model can accurately predict the main engine-out/DOC/DPF NO/NO2 dynamics very well in semisteady-state tests. For the proposed observer, the predictions converge to the model values and estimate the NO and NO2 concentrations in the aftertreatment system well.

1.
Hsieh
,
M. F.
,
Canova
,
M.
, and
Wang
,
J.
, 2009, “
Model Predictive Control Approach for AFR Control During Lean NOx Trap Regenerations
,”
SAE International Journal of Fuels and Lubricants
,
2
(
1
), pp.
149
157
.
2.
Hsieh
,
M. F.
,
Wang
,
J.
, and
Canova
,
M.
, 2010, “
Two-Level Nonlinear Model Predictive Control for Lean NOx Trap Regenerations
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
132
, (
4
), p.
041001
.
3.
Hsieh
,
M. F.
, and
Wang
,
J.
, 2009, “
Diesel Engine Selective Catalytic Reduction Ammonia Surface Coverage Control Using a Computationally-Efficient Model Predictive Control Assisted Method
,”
Proceedings of the ASME Dynamic Systems and Control Conference
.
4.
Sasaki
,
S.
,
Sarlashkar
,
J.
,
Neely
,
G.
,
Wang
,
J.
,
Lu
,
Q.
, and
Sono
,
H.
, 2008, “
Investigation of Alternative Combustion, Airflow Dominant Control and Aftertreatment Systems for Clean Diesel Vehicles
,”
SAE Transactions-Journal of Fuels and Lubricants
,
116
, pp.
486
495
.
5.
Upadhyay
,
D.
, and
Van Nieuwstadt
,
M.
, 2006, “
Model Based Analysis and Control Design of a Urea-SCR DeNOx Aftertreatment System
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
, pp.
737
741
.
6.
Wang
,
J.
, 2008, “
Smooth In-Cylinder Lean-Rich Combustion Switching Control for Diesel Engine Exhaust-Treatment System Regenerations
,”
SAE International Journal of Passenger Cars–Electronic and Electrical Systems
,
1
(
1
), pp.
340
348
.
7.
Wang
,
J.
, 2008, “
Hybrid Robust Air-Path Control for Diesel Engines Operating Conventional and Low Temperature Combustion Modes
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
16
, pp.
1138
1151
.
8.
Wang
,
J.
, 2008, “
Air Fraction Estimation for Multiple Combustion Mode Diesel Engines With Dual-Loop EGR Systems
,”
Control Eng. Pract.
0967-0661,
16
(
12
), pp.
1479
1486
.
9.
Premchand
,
K. C.
,
Johnson
,
J. H.
,
Yang
,
S.
,
Triana
,
A. P.
, and
Baumgard
,
K. J.
, 2007, “
A Study of the Filtration and Oxidation Characteristics of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter
,”
2007 SAE World Congress
, SAE Paper No. 2007-01-1123.
10.
Koebel
,
M.
,
Elsener
,
M.
, and
Kleemann
,
M.
, 2000, “
Urea-SCR: A Promising Technique to Reduce NOx Emissions From Automotive Diesel Engines
,”
Catal. Today
0920-5861,
59
, pp.
335
345
.
11.
Chatterjee
,
D.
,
Burkhardt
,
T.
,
Weibel
,
M.
,
Tronconi
,
E.
,
Nova
,
I.
, and
Ciardelli
,
C.
, 2006, “
Numerical Simulation of NO/NO2/NH3 Reaction on SCR-Catalytic Converters: Model Development and Applications
,”
SAE 2006 World Congress
, SAE Paper No. 2006-01-0468.
12.
Chi
,
J. N.
, and
Dacosta
,
H. F. M.
, 2005, “
Modeling and Control of a Urea-SCR Aftertreatment System
,”
2005 SAE World Congress
, SAE Paper No. 2005-01-0966.
13.
Ericson
,
C.
,
Westerberg
,
B.
, and
Odenbrand
,
I.
, 2008, “
A State-Space Simplified SCR Catalyst Model for Real Time Applications
,”
SAE 2008 World Congress
, SAE Paper No. 2008-01-0616.
14.
Hsieh
,
M. F.
, and
Wang
,
J.
, “
Staircase Ammonia Coverage Ratio Profile Control for Diesel Engine Two-Cell Selective Catalytic Reduction Systems
,”
Proceedings of the 2010 American Control Conference
, pp.
3003
3008
.
15.
Schar
,
C. M.
,
Onder
,
C. H.
, and
Geering
,
H. P.
, 2006, “
Control of an SCR Catalyst Converter System for a Mobile Heavy-Duty Application
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
14
(
4
), pp.
641
653
.
16.
Devarakonda
,
M.
,
Parker
,
G.
,
Johnson
,
J. H.
, and
Strots
,
V.
, 2009, “
Model-Based Control System Design in a Urea-SCR Aftertreatment System Based on NH3 Sensor Feedback
,”
International Journal of Automotive Technology
,
10
(
6
), pp.
653
662
.
17.
Grossale
,
A.
,
Nova
,
I.
,
Tronconi
,
E.
,
Chatterjee
,
D.
, and
Weibel
,
M.
, 2008, “
The Chemistry of the NO/NO2-NH3 “Fast” SCR Reaction Over Fe-ZSM5 Investigated by Transient Reaction Analysis
,”
J. Catal.
0021-9517,
256
, pp.
312
322
.
18.
Joo
,
K.
,
Jo
,
J.
,
Kim
,
C.
,
Lee
,
J.
, and
Kim
,
H.
, 2008, “
The Study of NOx Reduction Using Urea-SCR System With CPF and DOC for Light Duty Vehicle: The Diesel NOx Reduction System
,”
2008 SAE World Congress
, SAE Paper No. 2008-02-1183.
19.
Koebel
,
M.
,
Media
,
G.
, and
Elsener
,
M.
, 2002, “
Selective Catalytic Reduction of NO and NO2 at Low Temperatures
,”
Catal. Today
0920-5861,
73
, pp.
239
247
.
20.
Nova
,
I.
,
Ciardelli
,
C.
,
Tronoconi
,
E.
,
Chatterjee
,
D.
, and
Weibel
,
M.
, 2007, “
NH3-NO/NO2 SCR for Diesel Exhausts Aftertreatment: Mechanism and Modeling of a Catalytic Converter
,”
Top. Catal.
1022-5528,
42–43
, pp.
43
46
.
21.
Addy Majewski
,
W.
,
Ambs
,
J. L.
, and
Bickel
,
K.
, 1995, “
Nitrogen Oxides Reactions in Diesel Oxidation Catalyst
,” SAE International Congress and Exposition, SAE Paper No. SP-1073.
22.
Chatterjee
,
D.
,
Burkhardt
,
T.
,
Rappe
,
T.
,
Guthenke
,
A.
, and
Wibel
,
M.
, 2008, “
Numerical Simulation of DOC+DPF+SCR Systems: DOC Influence on SCR Performance
,”
ASME J. Lubr. Technol.
0022-2305,
1
, pp.
440
451
.
23.
Dabhoiwala
,
R. H.
,
Johnson
,
J. H.
,
Naber
,
J. D.
, and
Bagley
,
S. T.
, 2008, “
Experimental and Modeling Results Comparing Two Diesel Oxidation Catalyst Catalyzed Particulate Filter Systems
,”
SAE 2008 World Congress
, SAE Paper No. 2008-01-0484.
24.
Fujdala
,
K. L.
,
Truex
,
T. J.
,
Nicholas
,
J. B.
, and
Woo
,
J. W.
, 2008, “
Rational Design of Oxidation Catalysts for Diesel Emission Control
,”
SAE 2008 World Congress
, SAE Paper No. 2008-01-0070.
25.
Mohammed
,
H.
,
Lakkireddy
,
V. R.
,
Johnson
,
J. H.
, and
Bagley
,
T.
, 2006, “
An Experimental and Modeling Study of a Diesel Oxidation Catalyst and a Catalyzed Diesel Particulate Filter Using a 1D 2 Layer Model
,”
SAE 2006 World Congress
, SAE Paper No. 2006-01-0466.
26.
Amin
,
E.
,
Pecheny
,
V.
,
Gravante
,
S.
, and
Siow
,
Y.
, 2006, “
A Computational Procedure for Predicting Nitrogen Oxide Emission from Diesel Engines
,”
2006 SAE World Congress
, SAE Paper No. 2006-01-0240.
27.
Guzzella
,
L.
, and
Onder
,
C. H.
, 2004,
Introduction to Modeling and Control of Internal Combustion Engine Systems
,
Springer
,
New York
.
28.
Hill
,
S. C.
, and
Smoot
,
L. D.
, 2000, “
Modeling of Nitrogen Oxides Formation and Destruction in Combustion Systems
,”
Prog. Energy Combust. Sci.
0360-1285,
26
, pp.
417
458
.
29.
Kulakov
,
V.
, and
Merker
,
G.
, 1995, “
Nitrogen Oxidizing in Modeling of Diesel Engine Operation
,”
SAE International Off-Highway & Powerplant Congress & Exposition
, SAE Paper No. 952063.
30.
Miller
,
L. A.
,
Kee
,
R. J.
, and
Westbrook
,
C. K.
, 1990, “
Chemical Kinetics and Combustion Modeling
,”
Annu. Rev. Phys. Chem.
0066-426X,
41
, pp.
345
387
.
31.
Amnéus
,
P.
,
Mauss
,
F.
,
Kraft
,
M.
,
Vressner
,
A.
, and
Johansson
,
B.
, 2005, “
NOx and N2O Formation in HCCI Engines
,”
SAE 2005 World Congress
, SAE Paper No. 2005-01-0126.
32.
Pipho
,
M. J.
,
Kittelson
,
D. B.
, and
Zarling
,
D. D.
, 1991, “
NO2 Formation in a Diesel Engine
,” SAE Technical Paper No. 910231.
33.
Shudo
,
T.
,
Omori
,
K.
, and
Hiyama
,
O.
, 2008, “
NOx Reduction and NO2 Emission Characteristics in Rich Lean Combustion of Hydrogen
,”
Int. J. Hydrogen Energy
0360-3199,
33
, pp.
4689
4693
.
34.
Irani
,
K.
,
Epling
,
W. S.
, and
Blint
,
R.
, 2009, “
Effect of Hydrocarbon Species on NO Oxidation Over Diesel Oxidation Catalysts
,”
Appl. Catal., B
0926-3373,
92
(
3–4
), pp.
422
428
.
35.
Laidler
,
K. J.
, 1984, “
The Development of the Arrhenius Equation
,”
J. Chem. Educ.
0021-9584,
61
, pp.
494
498
.
36.
Jung
,
J.
,
Song
,
S.
, and
Chun
,
K. M.
, 2008, “
Characterization of Catalyzed Soot Oxidation with NO2, NO and O2 Using a Lab-Scale Flow Reactor System
,”
SAE 2008 World Congress
, SAE Paper No. 2008-01-0482.
37.
Reeves
,
C.
, 1997, “
Genetic Algorithms: No Panacea, but A Valuable Tool for the Operations Researcher
,”
INFORMS J. Comput.
1091-9856,
9
, pp.
263
265
.
38.
Schmitt
,
L. M.
, 2001, “
Theory of Genetic Algorithm
,”
Theor. Comput. Sci.
0304-3975,
259
, pp.
1
61
.
39.
Hu
,
Y.
,
Yurkovich
,
S.
,
Guezennec
,
Y.
, and
Yurkovich
,
B. J.
, 2009, “
A Technique for Dynamic Battery Model Identification in Automotive Applications Using Linear Parameter Varying Structures
,”
Control Eng. Pract.
0967-0661,
17
, pp.
1190
1201
.
40.
Kristinsson
,
K.
, and
Dumont
,
G. A.
, 1992, “
System Identification and Control Using Genetic Algorithms
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
22
, pp.
1033
1046
.
41.
Premchand
,
K. C.
, “
An Experimental and Modeling Study of the Filtration and Oxidation Characteristics of a Diesel Oxidation Catalyst
,” MS thesis, Michigan Technological University, Houghton, MI.
42.
Katare
,
S.
,
Patterson
,
J. E.
, and
Laing
,
P. M.
, 2007, “
Aged DOC is a Net Consumer of NO2: Analyses of Vehicle, Engine-Dynamometer and Reactor Data
,”
SAE 2007 World Congress
, SAE Paper No. 2007-01-3984.
You do not currently have access to this content.