A reduction in the fuel consumption of a passenger car with a pushbelt continuously variable transmission (CVT) can be established via optimization of the hydraulic actuation system. This requires a model of the dynamic characteristics with low complexity and high accuracy, e.g., for closed-loop control design, for closed-loop simulation, and for optimization of design parameters. The hydraulic actuation system includes a large number of hydraulic components and a model of the dynamic characteristics is scarce, which is caused by the complexity, the nonlinearity, and the necessity of a large number of physical parameters that are uncertain or unknown. In this paper, a modular model for the hydraulic actuation system on the basis of first principles is constructed and validated, which is characterized by a relatively low complexity and a reasonably high accuracy. A modular approach is pursued with respect to the first principles models of the hydraulic components, i.e., a hydraulic pump, spool valves, proportional solenoid valves, channels, and hydraulic cylinders, which reduces complexity and improves transparency. The model parameters are either directly provided, directly measured, or identified. The model of the hydraulic actuation system is composed of the models of the hydraulic components and is experimentally validated by means of measurements that are obtained from a production pushbelt CVT. Several experiment types are considered. The correspondence between the measured and simulated responses is fairly good.

1.
Pfiffner
,
R.
, and
Guzzella
,
L.
, 2001, “
Optimal Operation of CVT-Based Powertrains
,”
Int. J. Robust Nonlinear Control
1049-8923,
11
(
11
), pp.
1003
1021
.
2.
van der Sluis
,
F.
,
van Dongen
,
T.
,
van Spijk
,
G. -J.
,
van der Velde
,
A.
, and
van Heeswijk
,
A.
, 2006, “
Fuel Consumption Potential of the Pushbelt CVT
,”
Proceedings of the FISITA 2006 World Automotive Congress
, Paper No. F2006P218 (CD-ROM).
3.
Cheng
,
Y.
, and
De Moor
,
B. L. R.
, 1994, “
Robustness Analysis and Control System Design for a Hydraulic Servo System
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
2
(
3
), pp.
183
197
.
4.
Pesgens
,
M.
,
Vroemen
,
B.
,
Stouten
,
B.
,
Veldpaus
,
F.
, and
Steinbuch
,
M.
, 2006, “
Control of a Hydraulically Actuated Continuously Variable Transmission
,”
Veh. Syst. Dyn.
0042-3114,
44
(
5
), pp.
387
406
.
5.
Bonsen
,
B.
,
Klaassen
,
T. W. G. L.
,
Pulles
,
R. J.
,
Simons
,
S. W. H.
,
Steinbuch
,
M.
, and
Veenhuizen
,
P. A.
, 2005, “
Performance Optimisation of the Push-Belt CVT by Variator Slip Control
,”
Int. J. Veh. Des.
0143-3369,
39
(
3
), pp.
232
256
.
6.
van der Noll
,
E.
,
van der Sluis
,
F.
,
van Dongen
,
T.
, and
van der Velde
,
A.
, 2009, “
Innovative Self-Optimising Clamping Force Strategy for the Pushbelt CVT
,”
Proceedings of the SAE 2009 World Congress
, Paper No. 2009-01-1537 (CD-ROM).
7.
van der Meulen
,
S.
,
de Jager
,
B.
,
van der Noll
,
E.
,
Veldpaus
,
F.
,
van der Sluis
,
F.
, and
Steinbuch
,
M.
, 2009, “
Improving Pushbelt Continuously Variable Transmission Efficiency via Extremum Seeking Control
,”
Proceedings of the Third IEEE Multi-Conference on Systems and Control
, pp.
357
362
.
8.
Rothenbühler
,
Y.
, 2009, “
New Slip Synthesis and Theoretical Approach of CVT Slip Control
,” Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
9.
Ljung
,
L.
, 1999,
System Identification: Theory for the User
(
Prentice Hall Information and System Sciences Series
),
2nd ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
10.
Jelali
,
M.
, and
Kroll
,
A.
, 2003,
Hydraulic Servo-Systems: Modelling, Identification and Control
(
Advances in Industrial Control
),
Springer-Verlag
,
London
.
11.
De Schutter
,
B.
, 2000, “
Minimal State-Space Realization in Linear System Theory: An Overview
,”
J. Comput. Appl. Math.
0377-0427,
121
(
1–2
), pp.
331
354
.
12.
Merritt
,
H. E.
, 1967,
Hydraulic Control Systems
,
Wiley
,
London
.
13.
Lebrun
,
M.
,
Vasiliu
,
D.
, and
Vasiliu
,
N.
, 2009, “
Numerical Simulation of the Fluid Control Systems by AMESim
,”
Studies in Informatics and Control
1220-1766,
18
(
2
), pp.
111
118
.
14.
Kett
,
R.
, 1993, “
Ein Plus für DSH
,”
Ölhydraulik und Pneumatik
0341-2660,
37
(
6
), pp.
517
523
.
15.
Tiller
,
M. M.
, 2005, “
Development of a Simplified Transmission Hydraulics Library Based on Modelica.Fluid
,”
Proceedings of the Fourth International Modelica Conference
,
G.
Schmitz
, ed., pp.
237
243
.
16.
Harman
,
P.
, 2006, “
Modelling Automotive Hydraulic Systems Using the Modelica ActuationHydraulics Library
,”
Proceedings of the Fifth International Modelica Conference
, Vol.
2
, pp.
399
403
.
17.
Zavarehi
,
M. K.
,
Lawrence
,
P. D.
, and
Sassani
,
F.
, 1999, “
Nonlinear Modeling and Validation of Solenoid-Controlled Pilot-Operated Servovalves
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
4
(
3
), pp.
324
334
.
18.
Lin
,
S. J.
, and
Akers
,
A.
, 1989, “
A Dynamic Model of the Flapper-Nozzle Component of an Electrohydraulic Servovalve
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
111
(
1
), pp.
105
109
.
19.
Handroos
,
H. M.
, and
Vilenius
,
M. J.
, 1990, “
The Utilization of Experimental Data in Modelling Hydraulic Single Stage Pressure Control Valves
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
112
(
3
), pp.
482
488
.
20.
Lin
,
S. J.
, and
Akers
,
A.
, 1991, “
Dynamic Analysis of a Flapper-Nozzle Valve
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
113
(
1
), pp.
163
167
.
21.
Tsai
,
S. T.
,
Akers
,
A.
, and
Lin
,
S. J.
, 1991, “
Modeling and Dynamic Evaluation of a Two-Stage Two-Spool Servovalve Used for Pressure Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
113
(
4
), pp.
709
713
.
22.
Vaughan
,
N. D.
, and
Gamble
,
J. B.
, 1996, “
The Modeling and Simulation of a Proportional Solenoid Valve
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
118
(
1
), pp.
120
125
.
23.
Montanari
,
M.
,
Ronchi
,
F.
,
Rossi
,
C.
,
Tilli
,
A.
, and
Tonielli
,
A.
, 2004, “
Control and Performance Evaluation of a Clutch Servo System With Hydraulic Actuation
,”
Control Eng. Pract.
0967-0661,
12
(
11
), pp.
1369
1379
.
24.
Skogestad
,
S.
, and
Postlethwaite
,
I.
, 2005,
Multivariable Feedback Control: Analysis and Design
,
2nd ed.
,
Wiley
,
Chichester, West Sussex
.
25.
Serrarens
,
A. F. A.
, 2001, “
Coordinated Control of the Zero Inertia Powertrain
,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
26.
Klaassen
,
T. W. G. L.
, 2007, “
The Empact CVT: Dynamics and Control of an Electromechanically Actuated CVT
,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
27.
Fuchs Europe Schmierstoffe GmbH
, 2005, Product Information—Fuchs TITAN ATF CVT, http://www.fuchs-europe.de/automatic-transmission-fluids.htmlhttp://www.fuchs-europe.de/automatic-transmission-fluids.html, PI60290e.
28.
van der Sluis
,
F.
, 2001, “
Hydraulic Models VDT and VDT+ System
,” Van Doorne’s Transmissie, Internal Report No. 70093/8.
29.
McCloy
,
D.
, and
Martin
,
H. R.
, 1980,
Control of Fluid Power: Analysis and Design
(
Ellis Horwood Series in Engineering Science
),
2nd ed.
,
Ellis Horwood
,
Chichester, West Sussex
.
30.
Srnik
,
J.
,
Brandenburg
,
M.
,
Greiner
,
J.
, and
Gödecke
,
T.
, 2005, “
Simulation von Druckeinbrüchen in der Hydraulikschaltplatte eines automatischen CVT-Getriebes bei hochdynamischen Lastanforderungen
,”
VDI-Ber.
0083-5560,
1917
, pp.
3
21
.
31.
Karnopp
,
D.
, 1985, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
107
(
1
), pp.
100
103
.
32.
Ide
,
T.
,
Udagawa
,
A.
, and
Kataoka
,
R.
, 1994, “
A Dynamic Response Analysis of a Vehicle With a Metal V-Belt CVT
,”
Proceedings of the 1994 International Symposium on Advanced Vehicle Control
, pp.
230
235
.
33.
Shafai
,
E.
,
Simons
,
M.
,
Neff
,
U.
, and
Geering
,
H. P.
, 1995, “
Model of a Continuously Variable Transmission
,”
Proceedings of the First IFAC Workshop on Advances in Automotive Control
,
U.
Kiencke
and
L.
Guzzella
, eds., Vol.
1
, pp.
105
113
.
34.
Carbone
,
G.
,
Mangialardi
,
L.
, and
Mantriota
,
G.
, 2005, “
The Influence of Pulley Deformations on the Shifting Mechanism of Metal Belt CVT
,”
ASME J. Mech. Des.
0161-8458,
127
(
1
), pp.
103
113
.
35.
Kiesel
,
J.
,
Greiner
,
J.
,
Veil
,
A.
, and
Strenkert
,
J.
, 2005, “
Das neue CVT-Getriebe AUTOTRONIC von Mercedes Benz
,”
Proceedings of the 26th Internationales Wiener Motorensymposium
(CD-ROM).
You do not currently have access to this content.