Learning and tuning of fuzzy rule-based systems is the core issue for linguistic fuzzy modeling. To achieve an accurate linguistic fuzzy model genetic learning of initial rule base is introduced and evolutionary simultaneous tuning of nonlinear scaling factors and fuzzy membership functions (MFs) are employed. Novel evolutionary algorithm is applied for simultaneous optimization process due to its computational efficiency and reliability. To preserve the interpretability issue, linguistic hedges are utilized, which slightly modify the MFs. Interpretability issue is further improved by introducing the statistical based fuzzy rule reduction technique. In this technique, most appropriate rules are selected by computing the activation tendency of each rule. Further, focusing on granularity of partition, linguistic terms for input and output variables are modified and new reduced rule base system is developed. The proposed techniques are applied to nonlinear electrohydraulic servo system. Extensive simulation and experiment results indicate that proposed schemes not only improve the accuracy but also ensure interpretability preservation. Further, controller developed based on proposed schemes sustains the performance under parametric uncertainties and disturbances.

1.
Zadeh
,
L. A.
, 1965, “
Fuzzy Sets
,”
Inf. Control.
0019-9958,
8
, pp.
338
353
.
2.
Ilyas
,
E.
, and
Torun
,
Y.
, 2006, “
Fuzzy Logic Control to be Conventional Method
,”
Energy Convers. Manage.
0196-8904,
47
, pp.
377
394
.
3.
Casillas
,
J.
,
Cordon
,
O.
,
Jose del Jesus
,
M.
, and
Herrera
,
F.
, 2005, “
Genetic Tuning of Fuzzy Rule Deep Structures Preserving Interpretability and Its Interaction With Fuzzy Rule Set Reduction
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
13
(
1
), pp.
13
29
.
4.
Angelov
,
P. P.
, and
Buswell
,
R. A.
, 2003, “
Automatic Generation of Fuzzy Rule-Based Models From Data by Genetic Algorithms
,”
Inf. Sci. (N.Y.)
0020-0255,
150
, pp.
17
31
.
5.
Cintra
,
M. E.
, and
de Arruda Camargo
,
H.
, 2007, “
Fuzzy Rules Generation Using Genetic Algorithms With Self-Adaptive Selection
,”
Proceedings IEEE Conference on Information Reuse and Integration-IRI
, pp.
261
266
.
6.
Li
,
T. -H. S.
, and
Sheih
,
M. -Y.
, 2000, “
Design of a GA-Based Fuzzy PID Controller for Non-Minimum Phase Systems
,”
Fuzzy Sets Syst.
0165-0114,
111
, pp.
183
197
.
7.
Cho
,
H. -J.
,
Cho
,
K. -B.
, and
Wang
,
B. -H.
, 1997, “
Fuzzy-PID Hybrid Control: Automatic Rule Generation Using Genetic Algorithms
,”
Fuzzy Sets Syst.
0165-0114,
92
, pp.
305
316
.
8.
Homaifar
,
A.
, and
McCorrmick
,
E.
, 1995, “
Simultaneous Design of Membership Functions and Rule Sets for Fuzzy Controllers Using Genetic Algorithms
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
3
(
2
), pp.
129
139
.
9.
Alcala
,
R.
,
Alcala-Fedz
,
J.
,
Jose Gacto
,
M.
, and
Herrera
,
F.
, 2007,
A Multi-Objective Evolutionary Algorithm for Rule Selection and Tuning on Fuzzy Rule-Based Systems
,
IEEE
,
New York
.
10.
Hwang
,
H. S.
, 1999, “
Automatic Design of Fuzzy Rule Base for Modelling and Control Using Evolutionary Programming
,”
IEE Proc.: Control Theory Appl.
1350-2379,
146
(
1
), pp.
9
16
.
11.
Hoffmann
,
F.
, 2001, “
Evolutionary Algorithms for Fuzzy Control System Design
,”
Proc. IEEE
0018-9219,
89
(
9
), pp.
1318
1333
.
12.
Jeong
,
J.
, and
Oh
,
S. -Y.
, 1999, “
Automatic Rule Generation for Fuzzy Logic Controllers Using Rule-Level Co-Evolution of Subpopulations
,”
Proceedings IEEE Conference on Evolutionary Computation
, CEC 99, Washington, DC, pp.
2151
2156
.
13.
Fuller
,
R.
, 2003,
Introduction to Neuro-Fuzzy Systems
,
Springer-Verlag
,
Berlin
.
14.
Zhang
,
J. Y.
, and
Li
,
Y.
, 2006, “
Application of Genetic Algorithm in Optimization of Fuzzy Control Rules
,”
Proceedings of the Sixth International Conference on Intelligent System Design and Applications (ISDA ‘06)
.
15.
Kaya
,
M.
, and
Alhajj
,
R.
, 2006, “
Utilizing Genetic Algorithms to Optimize Membership Functions for Fuzzy Weighted Association Rules Mining
,”
Eng. Applic. Artif. Intell.
0952-1976,
24
, pp.
7
15
.
16.
Kissi
,
M.
,
Ramadani
,
M.
,
Tollabi
,
M.
, and
Zakrya
,
D.
, 2004,
Determination of Fuzzy Logic Membership Functions Using Genetic Algorithms: Application to Structure-Odor Modeling
,
Springer-Verlag
,
Berlin
, pp.
335
341
.
17.
Sakiroglu
,
A. M.
, and
Arslan
,
A.
, 2007,
Optimization of Fuzzy Membership Functions Using Clonal Selection
,
Springer-Verlag
,
Berlin
, pp.
694
701
.
18.
Juang
,
Y. -T.
,
Chang
,
Y. -T.
, and
Huang
,
C. -P.
, 2008, “
Design of Fuzzy PID Controllers Using Modified Triangular Membership Functions
,”
Inf. Sci. (N.Y.)
0020-0255,
178
, pp.
1325
1333
.
19.
Alcala
,
R.
,
Alcala-Fdez
,
J.
,
Gacto
,
M. J.
, and
Herrera
,
F.
, 2006,
Rule Base Reduction and Genetic Tuning of Fuzzy System Based on the Linguistic 3-Tuples Representation
,
Springer-Verlag
,
Berlin
, pp.
401
419
.
20.
Hadjili
,
M. L.
, and
Wertz
,
V.
, 2002, “
Takagi-Sugeno Fuzzy Modeling Incorporating Input Variables Selection
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
10
(
6
), pp.
728
742
.
21.
Watanable
,
K.
, and
Hashem
,
M. M. A.
, 2004,
Evolutionary Computations, New Algorithms and their Applications to Evolutionary Robots
,
Springer-Verlag
,
Berlin
.
22.
Garagić
,
D.
, and
Srinivasan
,
K.
, 2004, “
Application of Nonlinear Adaptive Control Techniques to an Electro Hydraulic Velocity Servomechanism
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
12
(
2
), pp.
303
314
.
23.
Merritt
,
H. E.
, 1967,
Hydraulic Control Systems
,
Wiley
,
New York
.
24.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
, 1995, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
3
), pp.
419
425
.
25.
Kevin
,
M.
, and
Passino
,
S. Y.
, 1998,
Fuzzy Control
,
Addison-Wesley
,
Reading, MA
.
26.
Reznik
,
L.
, 1997, “
Fuzzy Controllers
.”
27.
ChatterJee
,
S.
, and
Hadi
,
A. S.
, 2006,
Regression Analysis by Examples
,
4th ed.
,
Wiley
,
New York
.
28.
Taylor
,
J. K.
, and
Cihon
,
C.
, 2004,
Statistical Techniques for Data Analysis
,
2nd ed.
,
Chapman and Hall/CRC
, 2004 - Mathematics,
London
.
29.
Fogel
,
L. J.
,
Owens
,
A. J.
, and
Walsh
,
M. J.
, 1966,
Artificial Intelligence Through Simulated Evolution
,
Wiley
,
New York
.
30.
Back
,
T.
, and
Schwefel
,
H. -P.
, 1996, “
Evolutionary Computation: An Overview
,”
Proceedings of the Third IEEE Conference on Evolutionary Computation
, Nagoya, Japan, May 20–22, pp.
20
29
.
31.
Rechenberg
,
I.
, 1973,
Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipzen der biologischen Evolution
,
Frommann-Holzboog
,
Stuttgart
.
32.
Holland
,
J. H.
, 1975,
Adaptation in Natural and Artificial Systems
,
University of Michigan Press
,
Ann Arbor, MI
.
33.
Yao
,
X.
, and
Liu
,
Y.
, 1996, “
Fast Evolutionary Programming
,”
Proceedings of the Fifth Annual Conference on Evolutionary Programming
, San Diego, CA,
MIT
,
Reading, MA
, pp.
451
460
.
34.
Yao
,
X.
, and
Liu
,
Y.
, 1997, Fast Evolution Strategies, Control and Cybernetics, Special Issue on Evolutionary Computation, pp.
467
496
.
35.
Chellapilla
,
K.
, and
Fogel
,
D. B.
, 1997, “
Two New Mutation Operators for Enhanced Search and Optimization in Evolutionary Programming
,”
Proc. SPIE
0277-786X,
3165
, pp.
260
269
.
36.
Nazir
,
M. B.
, “
Electro Hydraulic Servo System: A Practical Guideline for Control and Optimization
,” VDM Verlag Dr. Muller Aktiengesellschft & Co. KG.
37.
Martikainen
,
J.
, 2006, “
Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving
,” Ph.D. thesis, Helsinki University of Technology, Espoo, Finland.
You do not currently have access to this content.