This research deals with thermal rendering for telepresence applications. We present the modeling and identification of thermo-electric modules (TEMs) to be used either as part of a thermal display or a remote thermal probe. First, TEMs are modeled in steady- and unsteady-state dynamics using recursive nonlinear autoregressive moving average models for both temperature and heat flux. The proposed models are convenient for simulation, control, electronic, and thermal engineering. They allow understanding the functionality of the heat pumps and facilitate the solving of cooling/heating problems without the need for expertise in thermal theory. Then, these models are used in a novel thermal rendering approach that is based on the estimation of the temperature in contact for both the finger and the probed remote object in a telepresence setup. The thermal feedback is provided by a bilateral control between the master (thermal display) and the slave (thermal probe robotic finger). Experimental results validating the models and the proposed thermal rendering scheme are presented and discussed.

1.
Jones
,
L. A.
, and
Ho
,
H. -N.
, 2008, “
Warm or Cool, Large or Small? The Challenge of Thermal Displays
,”
IEEE Transactions on Haptics
,
1
(
1
), pp.
53
70
.
2.
Russell
,
R. A.
, 1988, “
Thermal Sensor for Object Shape and Material Constitution
,”
Robotica
0263-5747,
6
(
01
), pp.
31
34
.
3.
Caldwell
,
D. G.
,
Andersen
,
U.
,
Bowler
,
C.
, and
Wardle
,
A.
, 1995, “
A High Power Weight Dexterous Manipulator Using Sensory Glove Based Motion Control and Tactile Feedback
,”
Trans. Inst. Meas. Control (London)
0142-3312,
17
(
5
), pp.
234
241
.
4.
Ottensmeyer
,
M.
, and
Salisbury
,
J.
, 1997, “
Hot and Cold Running VR, Adding Thermal Stimuli to Haptic Experience
,”
Proceedings of the PHANToM Users Group
.
5.
Benali-Khoudja
,
M.
,
Hafez
,
M.
,
Alexandre
,
J. M.
,
Benachour
,
J.
, and
Kheddar
,
A.
, 2003, “
Thermal Feedback Model for Virtual Reality
,”
International Symposium on Micromechatronics and Human Science
, pp.
153
158
.
6.
Yamamoto
,
A.
,
Cros
,
B.
,
Hashimoto
,
H.
, and
Higuchi
,
T.
, 2004, “
Control of Thermal Tactile Display Based on Prediction of Contact Temperature
,”
IEEE International Conference on Robotics and Automation
.
7.
Deml
,
B.
,
Mihalyi
,
A.
, and
Hannig
,
G.
, 2006, “
Development and Experimental Evaluation of a Thermal Display
,”
EuroHaptics
, pp.
257
262
.
8.
Ho
,
H. -N.
, and
Jones
,
L. A.
, 2006, “
Thermal Model for Hand-Object Interactions
,”
Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems
, pp.
461
467
.
9.
Ho
,
H. -N.
, and
Jones
,
L. A.
, 2007, “
Infrared Thermal Measurement System for Evaluating Model-Based Thermal Displays
,”
WHC’07: Proceedings of the Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
IEEE Computer Society
,
Washington, DC
, pp.
157
163
.
10.
Sarda
,
A.
,
Deterre
,
R.
, and
Vergneault
,
C.
, 2004, “
Heat Perception Measurements of the Different Parts Found in a Car Passenger Compartment
,”
Measurement
0263-2241,
35
, pp.
65
75
.
11.
Drif
,
A.
,
Citérin
,
J.
, and
Kheddar
,
A.
, 2005, “
Thermal Bilateral Coupling in Teleoperators
,”
IEEE/RSJ International Conference on Robots and Intelligent Systems
, pp.
1301
1306
.
12.
Guiatni
,
M.
,
Benallegue
,
A.
, and
Kheddar
,
A.
, 2008, “
Learning-Based Thermal Rendering for Telepresence
,”
Proceedings of the 6th International Conference on Haptics: Perception, Devices and Scenarios
, EuroHaptics '08, Madrid, Spain,
Springer-Verlag
,
Berlin, Heidelberg
, pp.
820
825
.
13.
Guiatni
,
M.
,
Benallegue
,
A.
, and
Kheddar
,
A.
, 2009, “
Thermal Display for Telepresence Based on Neural Identification and Heat Flux Control
,”
Presence: Teleoperators and Virtual Environments, MIT Press
,
18
(
2
), pp.
156
169
.
14.
Ciccarella
,
G.
, and
Marletti
,
P.
, 1989, “
Model Reference Adaptive Control of a Thermostatic Chamber
,”
IEEE Trans. Ind. Electron.
0278-0046,
36
(
1
), pp.
88
93
.
15.
Schutze
,
J.
,
Ilgen
,
H.
, and
Fahrner
,
W. R.
, 2001, “
An Integrated Micro Cooling System for Electronic Circuits
,”
IEEE Trans. Ind. Electron.
0278-0046,
48
(
2
), pp.
281
285
.
16.
Hodes
,
M.
, 2007, “
Optimal Pellet Geometries for Thermoelectric Refrigeration
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
30
(
1
), pp.
50
58
.
17.
Solbrekken
,
G. L.
,
Yazawa
,
K.
, and
Bar-Cohen
,
A.
, 2008, “
Heat Driven Cooling of Portable Electronics Using Thermoelectric Technology
,”
IEEE Trans. Adv. Packag.
1521-3323,
31
(
2
), pp.
429
437
.
18.
Citérin
,
J.
,
Pocheville
,
A.
, and
Kheddar
,
A.
, 2006, “
A Touch Rendering Device in a Virtual Environment With Kinesthetic and Thermal Feedback
,”
IEEE International Conference in Robotics and Automation
, pp.
3923
3928
.
19.
Lau
,
P.
, and
Buist
,
R.
, 1996. “
Temperature and Time Dependent Finite Difference Model of a Thermoelectric Pellet and Couple
,”
International Conference on Thermoelectrics
, pp.
227
233
.
20.
Helmers
,
L.
,
Müller
,
E.
,
Schilz
,
J.
, and
Kaysser
,
W. A.
, 1998, “
Graded and Stacked Thermoelectric Generators—Numerical Description and Maximization of Output Power Mater
,”
Mater. Sci. Eng., B
0921-5107,
56
(
1
), pp.
60
68
.
21.
Seifert
,
W.
,
Ueltzen
,
M.
,
Strumpel
,
C.
,
Heiliger
,
W.
, and
Muller
,
E.
, 2001, “
One-Dimensional Modeling of a Peltier Element
,”
International Conference on Thermoelectrics
, pp.
439
443
.
22.
Lineykin
,
S.
, and
Ben-Yaakov
,
S.
, 2007, “
Modeling and Analysis of Thermoelectric Modules
,”
IEEE Trans. Ind. Appl.
0093-9994,
43
(
2
), pp.
505
512
.
23.
Neto
,
A.
,
de-Almeida
,
L.
,
Lima
,
A.
, and
Deep
,
G.
, 2003, “
Recursive ARMA Modeling for Thermoelectric Modules
,”
20th IEEE Instrumentation and Measurement Technology Conference (IMTC’03)
, pp.
919
923
.
24.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
,
Clarendon Press
,
Oxford
.
25.
Labudovic
,
M.
, and
Li
,
J.
, 2004, “
Modeling of Thermoelectric Cooling of Pump Lasers
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
27
, pp.
724
730
.
26.
Chen
,
J.
,
Yan
,
Z.
, and
Wu
,
L.
, 1997, “
Nonequilibrium Thermodynamic Analysis of a Thermoelectric Device
,”
Energy
0360-5442,
22
(
10
), pp.
979
985
.
27.
Hodes
,
M.
, 2005, “
On One-Dimensional Analysis of Thermoelectric Modules (TEMs)
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
2
), pp.
218
229
.
28.
Martorana
,
R. T.
, 1975, “
Thermoelectric Temperature Control of Instrumentation—A Sample Design
,”
IEEE Trans. Ind. Electron. Control Instrum.
0018-9421,
IECI-22
(
1
), pp.
69
75
.
29.
Mitrani
,
D.
,
Tome
,
J. A.
,
Salazar
,
J.
,
Turo
,
A.
,
Garcia
,
M. J.
, and
Chavez
,
J. A.
, 2005, “
Methodology for Extracting Thermoelectric Module Parameters
,”
IEEE Trans. Instrum. Meas.
0018-9456,
54
(
4
), pp.
1548
1552
.
30.
Harvey
,
R. D.
,
Walker
,
D. G.
, and
Frampton
,
K. D.
, 2007, “
Enhancing Performance of Thermoelectric Coolers Through the Application of Distributed Control
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
30
(
2
), pp.
330
336
.
31.
Beaudoin
,
P. M.
,
Audet
,
Y.
, and
Bendali
,
A.
, 2008, “
Characterizing a Thermoelectric Module as Part of a Semiconductor Course Laboratory
,”
IEEE Trans. Educ.
0018-9359,
51
(
2
), pp.
282
287
.
32.
Guiatni
,
M.
,
Drif
,
A.
, and
Kheddar
,
A.
, 2007, “
Thermoelectric Modules: Recursive Nonlinear ARMA Modeling, Identification and Robust Control
,”
33rd Annual Conference of the IEEE Industrial Electronics Society (IECON)
, pp.
568
573
.
33.
Incropera
,
F.
,
DeWitt
,
D.
,
Bergman
,
T.
, and
Lavine
,
A.
, 2006,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
,
New York
.
34.
Lartz
,
D. J.
,
Cudney
,
H. H.
, and
Diller
,
T. E.
, 1994. “
Heat Flux Measurement Used for Feedforward Temperature Control
,”
Tenth International Heat Transfer Conference
, pp.
261
266
.
35.
Dyck
,
P. J.
,
Curtis
,
D. J.
,
Bushek
,
W.
, and
Offord
,
K.
, 1974, “
Description of ‘Minnesota Thermal Disks’ and Normal Values of Cutaneous Thermal Discrimination in Man
,”
Neurology
0028-3878,
24
, pp.
325
330
.
36.
Ho
,
H. -N.
, and
Jones
,
L. A.
, 2006, “
Contribution of Thermal Cues to Material Discrimination and Localization
,”
Percept. Psychophys.
0031-5117,
68
(
1
), pp.
118
128
.
You do not currently have access to this content.