This paper is concerned with the design of networked control systems using the modified generalized predictive control (M-GPC) method. Both sensor-to-controller (S-C) and controller-to-actuator (C-A) network-induced delays are modeled by two Markov chains. M-GPC uses the available output and prediction control information at the controller node to obtain the future control sequences. Different from the conventional generalized predictive control in which only the first element in control sequences is used, M-GPC employs the whole control sequences to compensate for the time delays in S-C and C-A links. The closed-loop system is further formulated as a special jump linear system. The sufficient and necessary condition to guarantee the stochastic stability is derived. Simulation studies and experimental tests for an experimental hydraulic position control system are presented to verify the effectiveness of the proposed method.

1.
Tipsuwan
,
Y.
, and
Chow
,
M. -Y.
, 2003, “
Control Methodologies in Networked Control Systems
,”
Control Eng. Pract.
0967-0661,
11
, pp.
1099
1111
.
2.
Gupta
,
V.
,
Hassibia
,
B.
, and
Murray
,
R. M.
, 2007, “
Optimal LQG Control Across Packet-Dropping Links
,”
Syst. Control Lett.
0167-6911,
56
(
6
), pp.
439
446
.
3.
Shi
,
Y.
, and
Fang
,
H.
, 2010, “
Kalman Filter Based Identification for Systems With Randomly Missing Measurements in a Network Environment
,”
Int. J. Control
0020-7179,
83
(
3
), pp.
538
551
.
4.
Shi
,
Y.
, and
Yu
,
B.
, 2009, “
Output Feedback Stabilization of Networked Control Systems With Random Delays Modeled by Markov Chains
,”
IEEE Trans. Autom. Control
0018-9286,
54
(
7
), pp.
1668
1674
.
5.
Shi
,
Y.
, and
Fang
,
H.
, 2009, “
Kalman Filter Based Adaptive Control for Networked Systems With Unknown Parameters and Randomly Missing Outputs
,”
Int. J. Robust Nonlinear Control
1049-8923,
19
(
18
), pp.
1976
1992
.
6.
Nilsson
,
J.
, 1998, “
Real-Time Control Systems With Delays
,” Ph.D. thesis, Lund Institute of Technology, Lund, Sweden.
7.
Xiao
,
L.
,
Hassibi
,
A.
, and
How
,
J. P.
, 2000, “
Control With Random Communication Delays via a Discrete-Time Jump System Approach
,”
Proceedings of the 2000 American Control Conference, Chicago, IL
, Vol.
3
, pp.
2199
2204
.
8.
Zhang
,
L.
,
Shi
,
Y.
,
Chen
,
T.
, and
Huang
,
B.
, 2005, “
A New Method for Stabilization of Networked Control Systems With Random Delays
,”
IEEE Trans. Autom. Control
0018-9286,
50
(
8
), pp.
1177
1181
.
9.
Hristu-Varsakelis
,
D.
, and
Levine
,
W. S.
, 2005,
Handbook of Networked and Embedded Control Systems
,
Birkhäuser
,
Boston, MA
.
10.
Gao
,
H.
, and
Chen
,
T.
, 2008, “
Network-Based H∞ Output Tracking Control
,”
IEEE Trans. Autom. Control
0018-9286,
53
(
3
), pp.
655
667
.
11.
Polushin
,
I. G.
,
Liu
,
P. X.
, and
Lung
,
C. -H.
, 2008, “
On the Model-Based Approach to Nonlinear Networked Control Systems
,”
Automatica
0005-1098,
44
(
9
), pp.
2409
2414
.
12.
Wu
,
J.
, and
Chen
,
T.
, 2007, “
Design of Networked Control Systems With Packet Dropouts
,”
IEEE Trans. Autom. Control
0018-9286,
52
(
7
), pp.
1314
1319
.
13.
Seiler
,
P.
, and
Sengupta
,
R.
, 2005, “
An H∞ Approach to Networked Control
,”
IEEE Trans. Autom. Control
0018-9286,
50
(
3
), pp.
356
364
.
14.
Huang
,
D.
, and
Nguang
,
S. K.
, 2008, “
State Feedback Control of Uncertain Networked Control Systems With Random Time Delays
,”
IEEE Trans. Autom. Control
0018-9286,
53
(
3
), pp.
829
834
.
15.
Camacho
,
E. F.
, and
Bordons
,
C.
, 2000,
Model Predictive Control
,
Springer
,
New York
.
16.
Goodwin
,
G. C.
,
Haimovich
,
H.
,
Quevedo
,
D. E.
, and
Welsh
,
J. S.
, 2004, “
A Moving Horizon Approach to Networked Control System Design
,”
IEEE Trans. Autom. Control
0018-9286,
49
(
9
), pp.
1427
1445
.
17.
Yang
,
S.
,
Chen
,
X.
,
Tan
,
L.
, and
Yang
,
L.
, 2005, “
Time Delay and Data Loss Compensation for Internet-Based Process Control Systems
,”
Trans. Inst. Meas. Control (London)
0142-3312,
27
(
2
), pp.
103
118
.
18.
Liu
,
G. -P.
,
Mu
,
J.
,
Rees
,
D.
, and
Chai
,
S.
, 2006, “
Design and Stability Analysis of Networked Control Systems With Random Communication Time Delay Using the Modified MPC
,”
Int. J. Control
0020-7179,
79
(
4
), pp.
288
297
.
19.
Wu
,
J.
,
Zhang
,
L.
, and
Chen
,
T.
, 2007, “
An MPC Approach to Networked Control Design
,”
Proceedings of the 26th Chinese Control Conference
, pp.
10
14
.
20.
Liu
,
G. -P.
,
Xia
,
Y.
,
Rees
,
D.
, and
Hu
,
W.
, 2007, “
Design and Stability Criteria of Networked Predictive Control Systems With Random Network Delay in the Feedback Channel
,”
IEEE Trans. Syst. Man Cybern., Part C Appl. Rev.
1094-6977,
37
(
2
), pp.
173
184
.
21.
Liu
,
G. -P.
,
Xia
,
Y.
,
Chen
,
J.
,
Rees
,
D.
, and
Hu
,
W.
, 2007, “
Networked Predictive Control of Systems With Random Network Delays in Both Forward and Feedback Channels
,”
IEEE Trans. Ind. Electron.
0278-0046,
54
(
3
), pp.
1282
1297
.
22.
Ouyang
,
H.
,
Liu
,
G. -P.
,
Rees
,
D.
, and
Hu
,
W.
, 2007, “
Predictive Control of Networked Non-Linear Control Systems
,”
Proc. Instn Mech. Engrs Part I: J. Systems and Control Engineering
,
221
(
3
), pp.
453
463
.
23.
Zhao
,
Y. -B.
,
Liu
,
G. -P.
, and
Rees
,
D.
, 2008, “
Networked Predictive Control Systems Based on the Hammerstein Model
,”
IEEE Trans. Circuits Syst., II: Express Briefs
1549-7747,
55
(
5
), pp.
469
473
.
24.
Tang
,
P. L.
, and
de Silva
,
C. W.
, 2006, “
Compensation for Transmission Delays in an Ethernet-Based Control Network Using Variable-Horizon Predictive Control
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
14
(
4
), pp.
707
718
.
25.
Kim
,
W.
,
Ji
,
K.
, and
Ambike
,
A.
, 2006, “
Networked Real-Time Control Strategy Dealing With Stochastic Time Delays and Packet Losses
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
(
3
), pp.
681
685
.
26.
Chai
,
S.
,
Liu
,
G. -P.
,
Rees
,
D.
, and
Xia
,
Y.
, 2008, “
Design and Practical Implementation of Internet-Based Predictive Control of a Servo System
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
16
(
1
), pp.
158
168
.
27.
Ha
,
Q. P.
,
Nguyen
,
Q. H.
,
Rye
,
D. C.
, and
Durrant-Whyte
,
H. F.
, 2001, “
Fuzzy Sliding-Mode Controllers With Applications
,”
IEEE Trans. Ind. Electron.
0278-0046,
48
(
1
), pp.
38
46
.
28.
Burton
,
R. T.
,
Ukrainetz
,
P. R.
,
Nikiforuk
,
P. N.
, and
Schoenau
,
G. J.
, 1999, “
Neural Networks and Hydraulic Control—From Simple to Complex Applications
,”
Proc. Instn Mech. Engrs Part I: J. Systems and Control Engineering
,
213
(
5
), pp.
349
358
.
29.
Ziaei
,
K.
, and
Sepehri
,
N.
, 2001, “
Design of a Nonlinear Adaptive Controller for an Electrohydraulic Actuator
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
(
3
), pp.
449
456
.
30.
Lin
,
Y.
,
Shi
,
Y.
, and
Burton
,
R.
, 2009, “
Discrete-Time h2
-Optimal Output Tracking Control for an Experimental Hydraulic Positioning Control System,”
International Journal of Advanced Mechatronic Systems
,
1
(
3
), pp.
168
174
.
31.
Kawka
,
P. A.
, and
Alleyne
,
A. G.
, 2008, “
An Analysis Framework for Evaluating Dropout Compensation Strategies in Wireless Servo Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
130
(
3
), p.
034506
.
32.
Zhang
,
X.
, and
Shin
,
K. G.
, 2004, “
Markov-Chain Modeling for Multicast Signaling Delay Analysis
,”
IEEE/ACM Trans. Netw.
1063-6692,
12
(
4
), pp.
667
680
.
33.
Sheng
,
L.
, and
Pan
,
Y. -J.
, 2009, “
Stochastic Analysis and Stabilization of Remote Control Systems
,”
Proceedings of the 2009 American Control Conference, St. Louis, MO
, pp.
2984
2989
.
34.
Ji
,
Y.
, and
Chizeck
,
H. J.
, 1988, “
Controllability, Observability and Discrete-Time Markovian Jump Linear Quadratic Control
,”
Int. J. Control
0020-7179,
48
(
2
), pp.
481
498
.
35.
Shi
,
P.
,
Boukas
,
E. -K.
, and
Agarwal
,
R. K.
, 1999, “
Control of Markovian Jump Discrete-Time Systems With Norm Bounded Uncertainty and Unknown Delay
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
11
), pp.
2139
2144
.
36.
Costa
,
O. L. V.
, and
Marques
,
R. P.
, 2000, “
Robust H2-Control for Discrete-Time Markovian Jump Linear Systems
,”
Int. J. Control
0020-7179,
73
(
1
), pp.
11
21
.
You do not currently have access to this content.