This paper deals with controller design for gentle physical human-robot interaction. Two objectives are set up. The first is to establish an analytical framework in order to justify the good features of state of the art controller, recently designed by numerical search of parameter space. The second is to investigate the possibilities to improve the performance of such controller. Our method ensures “prescribed” admittance behavior of the robot, similar to natural admittance controller design but with both more realistic model of the robot and more realistic target admittance. Joining natural admittance approach with the concept of complementary stability allows reaping the benefits of both. Limited knowledge about the environment via structured uncertainty allows a very simple worst-case analysis using elementary tools such as Routh–Hurwitz stability criterion. Consequent relation within the parameters determines an allowed region in the parameter space, where the contact stability is guaranteed. Not surprisingly, on one border of this region, the system behaves exactly the same as when the state of the art controller is employed. In addition, unexpected stability regions are discovered, suggesting theoretical performance improvements.

1.
Hogan
,
N.
, 1985, “
Impedance Control: An Approach to Manipulation: Part I—Theory
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
107
(
1
), pp.
1
7
.
2.
Colgate
,
J. E.
, 1988, “
The Control of Dynamically Interacting Systems
,” Ph.D. thesis, Massachusetts Institute of Technology (MIT), Cambridge, MA.
3.
Colgate
,
J. E.
, and
Hogan
,
N.
, 1988, “
Robust Control of Dynamically Interacting Systems
,”
Int. J. Control
0020-7179,
48
(
1
), pp.
65
88
.
4.
Colgate
,
J. E.
, and
Hogan
,
N.
, 1989, “
An Analysis of Contact Instability in Terms of Passive Physical Equivalents
,”
IEEE International Conference on Robotics and Automation
, pp.
404
409
.
5.
Kugi
,
A.
,
Ott
,
C.
,
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
, 2008, “
On the Passivity-Based Impedance Control of Flexible Joint Robots
,”
IEEE Trans. Rob. Autom.
1042-296X,
24
(
2
), pp.
416
429
.
6.
Albu-Schäffer
,
A.
,
Ott
,
C.
, and
Hirzinger
,
G.
, 2007, “
A Unified Passivity-Based Control Framework for Position, Torque and Impedance Control of Flexible Joint Robots
,”
Int. J. Robot. Res.
0278-3649,
26
(
1
), pp.
23
39
.
7.
Dohring
,
M.
, and
Newman
,
W. S.
, 2003, “
The Passivity of Natural Admittance Control Implementations
,”
IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
3710
3715
.
8.
Zhu
,
Y.
, and
Barth
,
E. J.
, 2008, “
Passivity-Based Impact and Force Control of a Pneumatic Actuator
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
130
(
2
), p.
024501
.
9.
Newman
,
W. S.
, 1992, “
Stability and Performance Limits of Interaction Controllers
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
114
, pp.
563
570
.
10.
Glosser
,
G.
, and
Newman
,
W. S.
, 1994, “
The Implementation of a Natural Admittance Controller on an Industrial Manipulator
,”
IEEE International Conference on Robotics and Automation
, pp.
1209
1215
.
11.
Dohring
,
M.
, and
Newman
,
W. S.
, 2002, “
Admittance Enhancement in Force Feedback of Dynamic Systems
,”
IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
638
643
.
12.
Rahman
,
M.
,
Ikeura
,
R.
, and
Mizutani
,
K.
, 1999, “
Investigating the Impedance Characteristic of Human Arm for Development of Robots to Co-Operate With Human Operators
,”
IEEE International Conference on Systems, Man, and Cybernetics
, Vol.
2
, pp.
676
681
.
13.
Tsuji
,
T.
, and
Tanaka
,
Y.
, 2005, “
Tracking Control Properties of Human-Robotic Systems Based on Impedance Control
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
35
(
4
), pp.
523
535
.
14.
Duchaine
,
V.
, and
Gosselin
,
C. M.
, 2007, “
General Model of Human-Robot Cooperation Using a Novel Velocity Based Variable Impedance Control
,”
WHC ‘07: Proceedings of the Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
IEEE Computer Society
, pp.
446
451
.
15.
Grunwald
,
G.
,
Schreiber
,
G.
,
Albu-Schaffer
,
A.
, and
Hirzinger
,
G.
, 2003, “
Programming by Touch: The Different Way of Human-Robot Interaction
,”
IEEE Trans. Ind. Electron.
0278-0046,
50
(
4
), pp.
659
666
.
16.
Worsnopp
,
T.
,
Peshkin
,
M.
,
Lynch
,
K.
, and
Colgate
,
J. E.
, 2006, “
Controlling the Apparent Inertia of Passive Human-Interactive Robots
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
(
1
), pp.
44
52
.
17.
Krebs
,
H.
,
Hogan
,
N.
,
Aisen
,
M.
, and
Volpe
,
B.
, 1998, “
Robot-Aided Neurorehabilitation
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
6
(
1
), pp.
75
87
.
18.
Fasoli
,
S. E.
,
Krebs
,
H. I.
,
Stein
,
J.
,
Frontera
,
W. R.
, and
Hogan
,
N.
, 2003, “
Effects of Robotic Therapy on Motor Impairment and Recovery in Chronic Stroke
,”
Arch. Phys. Med. Rehabil.
0003-9993,
84
(
4
), pp.
477
482
.
19.
Roberts
,
M.
, 2004, “
A Robot for Gait Rehabilitation
,” MS thesis, MIT, Cambridge, MA.
20.
Wheeler
,
J.
, 2004, “
An Ankle Robot for a Modular Gait Rehabilitation System
,” MS thesis, MIT, Cambridge, MA.
21.
Buerger
,
S.
, and
Hogan
,
N.
, 2007, “
Complementary Stability and Loop Shaping for Improved Human–Robot Interaction
,”
IEEE Trans. Rob. Autom.
1042-296X,
23
(
2
), pp.
232
244
.
22.
Buerger
,
S.
, and
Hogan
,
N.
, 2006, “
Relaxing Passivity for Human-Robot Interaction
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
4570
4575
.
23.
Krüger
,
J.
, and
Surdilovic
,
D.
, 2008, “
Robust Control of Force-Coupled Human-Robot-Interaction in Assembly Processes
,”
CIRP Ann.
0007-8506,
57
(
1
), pp.
41
44
.
24.
Buerger
,
S. P.
, 2005, “
Stable, High-Force, Low-Impedance Robotic Actuators for Human-Interactive Machines
,” Ph.D. thesis, Massachusetts Institute of Technology (MIT), Cambridge, MA.
25.
Tsuji
,
T.
,
Morasso
,
P. G.
,
Goto
,
K.
, and
Ito
,
K.
, 1995, “
Human Hand Impedance Characteristics During Maintained Posture
,”
Biol. Cybern.
0340-1200,
72
(
6
), pp.
475
485
.
26.
Palazzolo
,
J.
, 2005, “
Robotic Technology to Aid and Assess Recovery and Learning in Stroke Patients
,” Ph.D. thesis, Massachusetts Institute of Technology (MIT), Cambridge, MA.
27.
Maffezzoni
,
C.
,
Ferrarini
,
L.
, and
Carpanzano
,
E.
, 1999, “
Object-Oriented Models for Advanced Automation Engineering
,”
Control Eng. Pract.
0967-0661,
7
(
8
), pp.
957
968
.
You do not currently have access to this content.